Active Learning

Machine Learning

Training examples come in pairs, feature X and label Y .
Goal: Design a rule for predicting Y given X

Machine Learning

Training examples come in pairs, feature X and label Y .
Goal: Design a rule for predicting Y given X

Machine Learning

Training examples come in pairs, feature X and label Y .
Goal: Design a rule for predicting Y given X

Machine Learning

Training examples come in pairs, feature X and label Y .
Goal: Design a rule for predicting Y given X

Machine Learning

Training examples come in pairs, feature X and label Y .
Goal: Design a rule for predicting Y given X

Machine Learning (Passive)

Raw unlabeled data

passive learner

Machine Learning (Passive)

Raw unlabeled data

passive learner

expert/oracle analyzes/experiments to determine labels

Machine Learning (Passive)

Raw unlabeled data

Machine Learning (Passive)

Raw unlabeled data

Active Learning

Raw unlabeled data

active learner

expert/oracle analyzes/experiments to determine labels

Active Learning

Raw unlabeled data

Applications of Active Learning

Hand－written character recognition
Document classification

Systems biology

Sensor networks

In many applications，obtaining labels or running experiments is costly！

A Stylized Environmental Sensing Task

Where is it shady vs. sunny?

A Stylized Environmental Sensing Task

Where is it shady vs. sunny?

A Stylized Environmental Sensing Task

Where is it shady vs. sunny?

Suppose we have \mathbf{N} wireless sensors. Do we need to query them all?

Classic Binary Search

Where is it shady vs. sunny?

Classic Binary Search

Where is it shady vs. sunny?

Classic Binary Search

Classic Binary Search

Classic Binary Search

Classic Binary Search

adaptive sensing is dramatically more efficient

Environmental Sensing

Lake Wingra, Madison WI

water current velocity map (darker = high velocity)

Chin Wu, Civil \& Environmental Engr. http://limnology.wisc.edu/

acoustic doppler sensing of water current in Lake Wingra

classification into highand low-velocity regions

A. Singh, R. Nowak and P. Ramanathan. Active Learning for Adaptive Mobile Sensing Networks. ACM/IEEE Interntional Conference on Information Processing in Sensor Networks, IPSN 2006.

Outline of Part 3

Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses are not completely reliable?

Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses are not completely reliable?

Minimax Analysis of Active Learning: What are the fundamental capabilities and limits of active learning?

Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses are not completely reliable?

Minimax Analysis of Active Learning: What are the fundamental capabilities and limits of active learning?

Generalized Binary Search: Can binary search be generalized in order to learn more complex decision rules ?

0

1

Outline of Part 3

Noisy Binary Search: What if the expert/oracle responses are not completely reliable?

Minimax Analysis of Active Learning: What are the fundamental capabilities and limits of active learning?

Generalized Binary Search: Can binary search be generalized in order to learn more complex decision rules ?

0

1

Unsupervised Active Learning: Can active learning help in unsupervised learning problems such as clustering?

Binary Search and Noise

At what income level is a person more likely to be Republican vs. Democrat?

Binary Search and Noise

At what income level is a person more likely to be Republican vs. Democrat?

Binary Search and Noise

At what income level is a person more likely to be Republican vs. Democrat?

Binary Search and Noise

At what income level is a person more likely to be Republican vs. Democrat?

Bounded and Unbounded Noise

Bounded and Unbounded Noise

Bounded and Unbounded Noise

Bounded and Unbounded Noise

"bounded noise" : strictly more/less probably 1 at all locations

Bounded and Unbounded Noise

"unbounded noise" : like the toss of a fair coin at threshold

Horstein's Multiplicative Weighting Method

Channel Coding with Noiseless Feedback

Channel Coding with Noiseless Feedback

noise bound
= BSC crossover prob

threshold location
= n bit message

Channel Coding with Noiseless Feedback

noise bound
= BSC crossover prob

threshold location
$=n$ bit message

Channel Coding with Noiseless Feedback

noise bound
= BSC crossover prob

Both sender and receiver implement Horstein's algorithm

Sender deduces which binary symbol to send next in order to yield the greatest possible reduction in the receiver's uncertainty about n-bit message

Active Learning in Unbounded Noise

Classic Binary Search

Noisy Binary Search

Active Learning in Unbounded Noise

Classic Binary Search

Noisy Binary Search
unbounded noise

Active Learning in Unbounded Noise

Classic Binary Search

Noisy Binary Search
unbounded noise

Active Learning in Unbounded Noise

Classic Binary Search

Noisy Binary Search

unbounded noise

Rui Castro (Columbia): "How much does active learning help in this case ?"

Unbounded Noise Effects

Near $\frac{1}{2}$-level, $\quad c\left|x-\theta^{*}\right|^{\kappa-1} \leq|\eta(x)-1 / 2| \leq C\left|x-\theta^{*}\right|^{\kappa-1}, \quad \kappa \geq 1$

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)

Unbounded Noise Effects

Near $\frac{1}{2}$-level, $\quad c\left|x-\theta^{*}\right|^{\kappa-1} \leq|\eta(x)-1 / 2| \leq C\left|x-\theta^{*}\right|^{\kappa-1}, \quad \kappa \geq 1$

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)

Unbounded Noise Effects

Near $\frac{1}{2}$-level, $\quad c\left|x-\theta^{*}\right|^{\kappa-1} \leq|\eta(x)-1 / 2| \leq C\left|x-\theta^{*}\right|^{\kappa-1}, \quad \kappa \geq 1$

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)

Unbounded Noise Effects

Near $\frac{1}{2}$-level, $\quad c\left|x-\theta^{*}\right|^{\kappa-1} \leq|\eta(x)-1 / 2| \leq C\left|x-\theta^{*}\right|^{\kappa-1}, \quad \kappa \geq 1$

similar conditions are commonly employed in nonparametric statistics, Tsybakov (2004)

Horstein's Algorithm in Unbounded Noise

Horstein's Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of $P(Y=1 \mid X=x)$

Horstein's Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of $P(Y=1 \mid X=x)$
If $1 / 2$ level is not aligned with discrete thresholds, then noise of discretized problem is bounded, but depends on resolution of discretization t and the behavior of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=\mathrm{x})$ at the $1 / 2$ level

Horstein's Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of $P(Y=1 \mid X=x)$
If $1 / 2$ level is not aligned with discrete thresholds, then noise of discretized problem is bounded, but depends on resolution of discretization t and the behavior of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=\mathrm{x})$ at the $1 / 2$ level

$$
\mathbb{P}\left[h_{n}(X) \neq Y\right]-\mathbb{P}\left[h^{*}(X) \neq Y\right] \leq t^{\kappa}+t^{-1} \exp \left(-n c^{2} t^{2 \kappa-2}\right)
$$

Horstein's Algorithm in Unbounded Noise

Consider discrete set of thresholds and discretized version of $P(Y=1 \mid X=x)$
If $1 / 2$ level is not aligned with discrete thresholds, then noise of discretized problem is bounded, but depends on resolution of discretization t and the behavior of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=\mathrm{x})$ at the $1 / 2$ level

$$
\begin{aligned}
\mathbb{P}\left[h_{n}(X) \neq Y\right]-\mathbb{P}\left[h^{*}(X) \neq Y\right] & \leq t^{\kappa}+t^{-1} \exp \left(-n c^{2} t^{2 \kappa-2}\right) \\
& =O\left(\left[\frac{\log n}{n}\right]^{\frac{\kappa}{2 \kappa-2}}\right)
\end{aligned}
$$

Rates of Convergence

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task analogous to 1-d threshold problem

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task analogous to 1-d threshold problem

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task analogous to 1-d threshold problem

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task
analogous to 1-d threshold problem

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task
analogous to 1-d threshold problem
alien eggs

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task
analogous to 1-d threshold problem
alien eggs

Subjects observe random egg hatchings (passive learning) or they can select eggs to hatch (active learning).

They are asked to determine the egg shape where snakes become more probable than birds.

Are you a good active learner?

Castro, Kalish, Nowak, Qian, Rogers \& Zhu (NIPS 2008)
Investigate human active learning in task
analogous to 1-d threshold problem
alien eggs

Subjects observe random egg hatchings (passive learning) or they can select eggs to hatch (active learning).

They are asked to determine the egg shape where snakes become more probable than birds.

Results: Human learning rates agree with theory, $1 / n$ in passive mode and $\exp (-c n)$ in active mode.

Learning Multidimensional Threshold Functions

Learning Multidimensional Threshold Functions

Learning Multidimensional Threshold Functions

Learning Rates for Multidimensional Thresholds

Learning Rates for Multidimensional Thresholds

Learning Rates for Multidimensional Thresholds

sharp transition

$$
\kappa=1
$$

Hölder- α smooth decision boundary

smooth transition
$\kappa>1$

Active Learning: Theorem (R. Castro and RN '07)

$$
\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}} \preceq \inf _{h_{n}, S_{n}} \sup _{P_{X Y} \in \mathrm{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \preceq\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}}
$$

$$
(\rho=(d-1) / \alpha)
$$

Learning Rates for Multidimensional Thresholds

sharp transition

$$
\kappa=1
$$

Hölder- α smooth decision boundary

smooth transition
$\kappa>1$

Active Learning: Theorem (R. Castro and RN '07)

$$
\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}} \preceq \inf _{h_{n}, S_{n}} \sup _{P_{X Y} \in \mathrm{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \preceq\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}}
$$

$$
(\rho=(d-1) / \alpha)
$$

Compare with passive learning

$$
\inf _{h_{n}} \sup _{P_{X Y} \in \operatorname{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \asymp\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-1}} \quad \begin{array}{ll}
& \text { as } \rho \rightarrow 0 \\
\text { and } \kappa \rightarrow 1
\end{array}
$$

Learning Rates for Multidimensional Thresholds

sharp transition

$$
\kappa=1
$$

Hölder- α smooth decision boundary

smooth transition
$\kappa>1$

Active Learning: Theorem (R. Castro and RN '07)

$$
\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}} \preceq \inf _{h_{n}, S_{n}} \sup _{P_{X Y} \in \mathrm{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \preceq\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}}
$$

$$
(\rho=(d-1) / \alpha)
$$

Compare with passive learning

$$
\inf _{h_{n}} \sup _{P_{X Y} \in \operatorname{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \asymp\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-1}} \quad \begin{array}{ll}
& \text { as } \rho \rightarrow 0 \\
\text { and } \kappa \rightarrow 1
\end{array}
$$

Learning Rates for Multidimensional Thresholds

Main idea: reduce multidimensional problem to a sequence of 1-dim problems

Active Learning: Theorem (R. Castro and RN '07)

$$
\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}} \preceq \inf _{h_{n}, S_{n}} \sup _{P_{X Y} \in \mathrm{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \preceq\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-2}}
$$

$$
(\rho=(d-1) / \alpha)
$$

Compare with passive learning

$$
\inf _{h_{n}} \sup _{P_{X Y} \in \operatorname{BF}(\alpha, \kappa)} \mathcal{E}\left(h_{n}\right) \asymp\left(\frac{1}{n}\right)^{\frac{\kappa}{2 \kappa+\rho-1}} \quad \begin{array}{ll}
& \text { as } \rho \rightarrow 0 \\
\text { and } \kappa \rightarrow 1
\end{array}
$$

Algorithms for Active Learning

$$
\begin{aligned}
\mathcal{X} & :=\text { domain or query space } \\
\mathcal{Y} & :=\{-1,+1\} \\
\mathcal{H} & :=\text { hypothesis space } \quad \forall h \in H, \quad h: \mathcal{X} \rightarrow \mathcal{Y}
\end{aligned}
$$

Algorithms for Active Learning

$$
\begin{aligned}
\mathcal{X} & :=\text { domain or query space } \\
\mathcal{Y} & :=\{-1,+1\} \\
\mathcal{H} & :=\text { hypothesis space } \quad \forall h \in H, \quad h: \mathcal{X} \rightarrow \mathcal{Y}
\end{aligned}
$$

Algorithms for Active Learning

$$
\begin{aligned}
\mathcal{X} & :=\text { domain or query space } \\
\mathcal{Y} & :=\{-1,+1\} \\
\mathcal{H} & :=\text { hypothesis space } \quad \forall h \in H, \quad h: \mathcal{X} \rightarrow \mathcal{Y}
\end{aligned}
$$

Question: How many queries are required to determine h^{*} ?

Algorithms for Active Learning

$$
\begin{aligned}
\mathcal{X} & :=\text { domain or query space } \\
\mathcal{Y} & :=\{-1,+1\} \\
\mathcal{H} & :=\text { hypothesis space } \quad \forall h \in H, \quad h: \mathcal{X} \rightarrow \mathcal{Y}
\end{aligned}
$$

Question: How many queries are required to determine h^{*} ?

If \mathcal{H} is finite with $N:=|\mathcal{H}|$, then identification of h^{*} requires at least $\log _{2} N$ bits/queries.

Generalized Binary Search (aka Splitting Algorithm)

initialize: $n=0, \mathcal{H}_{0}=\mathcal{H}$
while $\left|\mathcal{H}_{n}\right|>1$

Generalized Binary Search (aka Splitting Algorithm)

initialize: $n=0, \mathcal{H}_{0}=\mathcal{H}$
while $\left|\mathcal{H}_{n}\right|>1$

1) Select $x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right|$.

Generalized Binary Search (aka Splitting Algorithm)

initialize: $n=0, \mathcal{H}_{0}=\mathcal{H}$
while $\left|\mathcal{H}_{n}\right|>1$

1) Select $x_{n}=\arg \min _{x \in \mathcal{X}} \mid \sum_{h \in \mathcal{H}_{n}} h(x)$.

Selects a query for which disagreement among hypotheses is maximal

Generalized Binary Search (aka Splitting Algorithm)

initialize: $n=0, \mathcal{H}_{0}=\mathcal{H}$
while $\left|\mathcal{H}_{n}\right|>1$

1) Select $x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right|$.
2) Query with x_{n} to obtain response $y_{n}=h^{*}\left(x_{n}\right)$.

Generalized Binary Search (aka Splitting Algorithm)

initialize: $n=0, \mathcal{H}_{0}=\mathcal{H}$
while $\left|\mathcal{H}_{n}\right|>1$

1) Select $x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right|$.
2) Query with x_{n} to obtain response $y_{n}=h^{*}\left(x_{n}\right)$.
3) Set $\mathcal{H}_{n+1}=\left\{h \in \mathcal{H}_{n}: h\left(x_{n}\right)=y_{n}\right\}, n=n+1$.

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Unlike the situation in 1-d, there is no

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Unlike the situation in 1-d, there is no

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Unlike the situation in 1-d, there is no

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Unlike the situation in 1-d, there is no

Bisection in Higher Dimensions

Consider the decision boundaries of a collection of classifiers in a multidimensional feature space

Unlike the situation in 1-d, there is no

Learning Halfspaces in \mathbb{R}^{d}

Learning Halfspaces in \mathbb{R}^{d}

Learning Halfspaces in \mathbb{R}^{d}

Learning Halfspaces in \mathbb{R}^{d}

queries generate only $O\left(N^{d}\right)$ of the possible 2^{N} binary patterns!

Learning Halfspaces in \mathbb{R}^{d}

$$
\begin{gathered}
\begin{array}{cccccccccccc}
A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6} & A_{7} & A_{8} & A_{9} & A_{10} & A_{11} \\
h_{1} \\
h_{2} \\
h_{3} \\
h_{4}
\end{array}\left[\begin{array}{cccccccc}
+ & - & - & - & - & + & + & + \\
+ & + & - & - & - & - & + & + \\
+ & + & + & - & - & - \\
+ & + & + & + & - & - & - & - \\
+ & + & + & +
\end{array}\right] \\
\text { bisecting queries }
\end{gathered}
$$

queries generate only $O\left(N^{d}\right)$ of the possible 2^{N} binary patterns!

Can GBS find near-bisecting queries in general?

Learning Halfspaces in \mathbb{R}^{d}

bisecting queries
queries generate only $O\left(N^{d}\right)$ of the possible 2^{N} binary patterns!

Can GBS find near-bisecting queries in general?

Example

Suppose we have a sensor network observing a binary activation pattern with a linear boundary. How many sensors must be queried to determine the pattern?

100 sensors, 9900 possible linear boundaries

Example

Suppose we have a sensor network observing a binary activation pattern with a linear boundary. How many sensors must be queried to determine the pattern?

100 sensors, 9900 possible linear boundaries

Example

Suppose we have a sensor network observing a binary activation pattern with a linear boundary. How many sensors must be queried to determine the pattern?

number of hypotheses vs. queries

log number of hypotheses vs. queries

Correct boundary determined after querying 12 sensors

"Is the person wearing a hat?"

"Is the person wearing a hat?"
"Does the person have blue eyes?"

"Is the person wearing a hat?"
"Does the person have blue eyes?"

GBS is quite effective if responses are reliable

"Is the person wearing a hat?"
"Does the person have blue eyes?"

GBS is quite effective if responses are reliable

Generalized Binary Search with Noise

$$
\begin{aligned}
& \frac{\text { Generalized Binary Search (GBS) }}{\text { initialize: } n=0, \mathcal{H}_{0}=\mathcal{H}} \\
& \text { while }\left|\mathcal{H}_{n}\right|>1 \\
& \text { 1) Select } x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right| \\
& \text { 2) Query with } x_{n} \text { to obtain response } y_{n}=h^{*}\left(x_{n}\right) \\
& \text { 3) Set } \mathcal{H}_{n+1}=\left\{h \in \mathcal{H}_{n}: h\left(x_{n}\right)=y_{n}\right\}, n=n+1
\end{aligned}
$$

Generalized Binary Search with Noise

$$
\begin{aligned}
& \frac{\text { Generalized Binary Search (GBS) }}{\text { initialize: } n=0, \mathcal{H}_{0}=\mathcal{H}} \\
& \text { while }\left|\mathcal{H}_{n}\right|>1 \\
& \text { 1) Select } x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right| \\
& \text { 2) Query with } x_{n} \text { to obtain response } y_{n}=h^{*}\left(x_{n}\right) \\
& \text { 3) Set } \mathcal{H}_{n+1}=\left\{h \in \mathcal{H}_{n}: h\left(x_{n}\right)=y_{n}\right\}, n=n+1
\end{aligned}
$$

Suppose that the binary response $y \in\{-1,1\}$ to query $x \in \mathcal{X}$ is an independent realization of the random variable Y satisfying $\mathbb{P}\left(Y=h^{*}(x)\right)>\mathbb{P}\left(Y=-h^{*}(x)\right)$, where $h^{*} \in \mathcal{H}$ is fixed but unknown (i.e., the response is only probably correct)

Generalized Binary Search with Noise

$$
\begin{aligned}
& \frac{\text { Generalized Binary Search (GBS) }}{\text { initialize: } n=0, \mathcal{H}_{0}=\mathcal{H}} \\
& \text { while }\left|\mathcal{H}_{n}\right|>1 \\
& \text { 1) Select } x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}_{n}} h(x)\right| \\
& \text { 2) Query with } x_{n} \text { to obtain response } y_{n}=h^{*}\left(x_{n}\right) \\
& \text { 3) Set } \mathcal{H}_{n+1}=\left\{h \in \mathcal{H}_{n}: h\left(x_{n}\right)=y_{n}\right\}, n=n+1
\end{aligned}
$$

Suppose that the binary response $y \in\{-1,1\}$ to query $x \in \mathcal{X}$ is an independent realization of the random variable Y satisfying $\mathbb{P}\left(Y=h^{*}(x)\right)>\mathbb{P}\left(Y=-h^{*}(x)\right)$, where $h^{*} \in \mathcal{H}$ is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as $\alpha:=\sup _{x \in \mathcal{X}} \mathbb{P}\left(Y \neq h^{*}(x)\right)$

Generalized Binary Search with Noise

> Noise-tolerant GBS
> initialize: p_{0} uniform over \mathcal{H} and $\alpha<\beta<1 / 2$.
> for $n=0,1,2, \ldots$
> 1) $x_{n}=\arg \min _{x \in \mathcal{X}}\left|\sum_{h \in \mathcal{H}} p_{n}(h) h(x)\right|$
> 2) Obtain noisy response y_{n}
> 3) Bayes update: $\forall h$
> $p_{n+1}(h) \propto p_{n}(h) \times\left\{\begin{array}{cl}1-\beta & , h\left(x_{n}\right)=y_{n} \\ \beta & , h\left(x_{n}\right) \neq y_{n}\end{array}\right.$
> hypothesis selected at each step:
> $\widehat{h}_{n}:=\arg \max _{h \in H} p_{n}(h)$

Suppose that the binary response $y \in\{-1,1\}$ to query $x \in \mathcal{X}$ is an independent realization of the random variable Y satisfying $\mathbb{P}\left(Y=h^{*}(x)\right)>\mathbb{P}\left(Y=-h^{*}(x)\right)$, where $h^{*} \in \mathcal{H}$ is fixed but unknown (i.e., the response is only probably correct)

The noise bound is defined as $\alpha:=\sup _{x \in \mathcal{X}} \mathbb{P}\left(Y \neq h^{*}(x)\right)$

Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the correct hypothesis after at most $c \log N$ queries, where $c>0$ is a small constant.

Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the correct hypothesis after at most $c \log N$ queries, where $c>0$ is a small constant.

Noisy Search

Theorem 2 Let \mathbb{P} denotes the underlying probability measure (governing noises and algorithm randomization). If $\beta>\alpha$ and the neighborly condition holds, then the noisy GBS algorithm generates a sequence of hypotheses satisfying

$$
\mathbb{P}\left(\widehat{h}_{n} \neq h^{*}\right) \leq N(1-\lambda)^{n} \leq N e^{-c n}, n=0,1, \ldots
$$

with exponential constant $c>0$.

Theory of Generalized Binary Search

GBS with N hypotheses/classifiers

Noiseless Search

Theorem 1 If the neighborly condition holds, then GBS terminates with the correct hypothesis after at most $c \log N$ queries, where $c>0$ is a small constant.

Noisy Search

Theorem 2 Let \mathbb{P} denotes the underlying probability measure (governing noises and algorithm randomization). If $\beta>\alpha$ and the neighborly condition holds, then the noisy GBS algorithm generates a sequence of hypotheses satisfying

$$
\mathbb{P}\left(\widehat{h}_{n} \neq h^{*}\right) \leq N(1-\lambda)^{n} \leq N e^{-c n}, n=0,1, \ldots
$$

with exponential constant $c>0$.

If we desire $\mathbb{P}\left(\widehat{h}_{n} \neq h^{*}\right)<\delta$, then we require only $n=\frac{1}{\lambda} \log \frac{N}{\delta}$ queries.

Active Clustering

Clustering in Large-Scale Networked Systems

Difficult or impossible to measure/observe everything in large systems

Clustering in Large-Scale Networked Systems

Genetic Landscape of a Cell
Boone Lab - Toronto

Difficult or impossible to measure/observe everything in large systems

Clustering in Large-Scale Networked Systems

Genetic Landscape of a Cell Boone Lab - Toronto

Difficult or impossible to measure/observe everything in large systems

Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components, rather they depend on the orchestrated interactions of these elements.

Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components, rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features

Gautam
Brian Dasarathy Eriksson

Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components, rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features

genes and expression/ interaction profiles

network routers and traffic/distance profiles

Network Structure and Clustering

Complex systems are not defined by the independent functions of individual components, rather they depend on the orchestrated interactions of these elements.

Network(s) of interactions can be revealed via clustering based on measured features

genes and expression/ interaction profiles

network routers and traffic/distance profiles

Similarity-Based Clustering: Each component (gene/router) has an associated feature (measurement profile). Components can be clustered based on feature similarities.

Internet Topology Inference

Internet Topology Inference

Internet Topology Inference

Internet Topology Inference

Correlation between traffic patterns at two points can indicate the similarity between nodes (e.g., number of shared links in paths)

Internet Topology Inference

Correlation between traffic patterns at two points can indicate the similarity between nodes (e.g., number of shared links in paths)

Network Mapping

$\mathrm{RTT}_{1} \& \mathrm{RTT}_{2}$ more correlated than $\mathrm{RTT}_{1} \& \mathrm{RTT}_{3}$ or $\mathrm{RTT}_{2} \& \mathrm{RTT}_{3}$

Network Mapping

$\mathrm{RTT}_{1} \& \mathrm{RTT}_{2}$ more correlated than $\mathrm{RTT}_{1} \& \mathrm{RTT}_{3}$ or $\mathrm{RTT}_{2} \& \mathrm{RTT}_{3}$

Active Clustering

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?
2. Does random subsampling suffice?

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?
2. Does random subsampling suffice?

Redundancy

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?
2. Does random subsampling suffice?

Redundancy

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?
2. Does random subsampling suffice?

Redundancy

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities
2. Does random subsampling suffice?

Redundancy

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities
2. Does random subsampling suffice?

Redundancy

Passive (Random) Subsampling

Random subsampling will miss small clusters

Actually, we can show that at least $O\left(n^{2} / m\right)$ pairwise similarities are required to recover clusters of size m.

Active Clustering

Questions:

1. Can we cluster from a subsample similarities?

A : Maybe unnecessary to obtain all pairwise similarities
2. Does random subsampling suffice?

A: No! We will require $O\left(n^{2}\right)$ random similarities

Redundancy

Passive (Random) Subsampling

Random subsampling will miss small clusters

Actually, we can show that at least $O\left(n^{2} / m\right)$ pairwise similarities are required to recover clusters of size m.

Active Clustering: Efficient Hierarchical Clustering

Active Clustering: Efficient Hierarchical Clustering

The proposed method adaptively selects the most informative pairwise similarities to recover the hierarchical clustering.

Under mild assumptions, we can discern the "outlier" of three items using only 3 pairwise similarities. i.e.,

Active Clustering: Efficient Hierarchical Clustering

The proposed method adaptively selects the most informative pairwise similarities to recover the hierarchical clustering.

Undermild assumptions, we can discern the "outlier" of three items using only 3 pairwise similarities. i.e.,
intra-cluster similarities > inter-cluster similarities

Active Clustering: Efficient Hierarchical Clustering

The proposed method adaptively selects the most informative pairwise similarities to recover the hierarchical clustering.

Undermild assumptions, we can discern the "outlier" of three items using only 3 pairwise similarities. i.e.,
intra-cluster similarities > inter-cluster similarities
$\mathrm{S}(\mathrm{o}, \mathrm{o})>\max \{\mathrm{S}(\mathrm{o}, \mathrm{o}), \mathrm{S}(\mathrm{o}, \mathrm{o})\}$

Active Clustering: Efficient Hierarchical Clustering

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Step 1

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Active Clustering: Efficient Hierarchical Clustering

This is a sequential procedure ...
Inserting a new object into a tree with i leaves

- Pick an internal node v with $\approx i / 2$ objects as descendants
- Find two leaves x_{k} and x_{j} whose common ancestor is v
- Find outlier $\left(x_{k}, x_{j}, v\right)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Theorem:

Under certain assumptions, the hierarchical clustering of n objects can be recovered using no more than $3 n \log n$ sequentially and adaptively selected pairwise similarities.
within a constant factor of the information theoretic lower bound

Robust Active Clustering

Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

$$
S(0,0)>\max \{S(0,0), S(0,0)\}
$$

Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

```
S(0,0)> max {S(0,0),S(0,0)}
```


To overcome this, we design a top-down recursive splitting approach and use voting to boost our confidence about each decision we make.

Robust Active Clustering

The previous technique is very sensitive to noise/errors and violations of the assumptions.

$\mathrm{S}(\mathrm{0}, \mathrm{O})>\max \{\mathrm{S}(\mathrm{0}, \mathrm{O}), \mathrm{S}(\mathrm{O}, \mathrm{O})\}$

To overcome this, we design a top-down recursive splitting approach and use voting to boost our confidence about each decision we make.

Goal : In each step, split a single cluster into 2 sub-clusters efficiently

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into. 1. Pick a random object and call it the "seed"

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into.

1. Pick a random object and call it the "seed"
2. For the other objects, decide if they are similar to O or not.

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into.

1. Pick a random object and call it the "seed".
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m "reinforcement" objects from C.

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into.

1. Pick a random object and call it the "seed".
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m "reinforcement" objects from C. Count the number of times outlier $(\bigcirc, \bigcirc, \bigcirc)$ is \bigcirc.

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into.

1. Pick a random object and call it the "seed".
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m "reinforcement" objects from C. Count the number of times outlier $(\mathrm{O}, \mathrm{O}, \mathrm{O})$ is O .
4. If roughly $m / 2$ times, O is similar to \bigcirc.

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each \bigcirc goes into.

1. Pick a random object and call it the "seed".
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m "reinforcement" objects from C. Count the number of times outlier $(\mathrm{O}, \mathrm{O}, \mathrm{O})$ is O .
4. If roughly $m / 2$ times, \bigcirc is similar to \bigcirc. If almost never, \bigcirc goes in the other cluster.

Robust Active Clustering Procedure

Strategy: Sequentially decide which of the two sub-clusters each O goes into.

1. Pick a random object and call it the "seed".
2. For the other objects, decide if they are similar to O or not.
3. Towards this, randomly pick m "reinforcement" objects from C. Count the number of times outlier $(\bigcirc, \bigcirc, \bigcirc)$ is \bigcirc.
4. If roughly $m / 2$ times, \bigcirc is similar to \bigcirc. If almost never, \bigcirc goes in the other cluster.

Theorem: This procedure correctly clusters n objects using $O\left(n \log ^{2} n\right)$ similarities and is robust to a significant fraction of errors.

Active Learning Summary

Classification:

NA \Rightarrow sample complexity $n \sim d / \epsilon$
A \Rightarrow sample complexity $n \sim d \log \epsilon^{-1}$

Remote Sensing:
NA \Rightarrow error $\sim O\left(n^{-1 / 2}\right)$
$\mathrm{A} \Rightarrow$ error $\sim O\left(n^{-2}\right)$

Network Mapping: NA $\Rightarrow O\left(n^{2}\right)$ probes $\mathrm{A} \Rightarrow O(n \log n)$ probes

Related Work (an incomplete list)

Active learning

Kulkarni, Mitter, \&Tsitsiklis (1993), Cohn, Atlas \& Ladner (1994),
P. Hall \& I. Molchanov (2003), Willett, Castro \& Nowak (2005), Dasgupta (2004,2005), Balcan, Beygelzimer \& Langford (2006), Kääriäinen (2006), Hanneke (2007), Dasgupta, Hsu, Monteleoni (2007), Castro \& Nowak (2008), Beygelzimer, Dasgupta \& Langford (2009), Hanneke (2011)

Minimax Analysis of Statistical Learning

Marron (1983), Yatrocos (1985), Barron (1991), Korostelev \& Tsybakov (1993), Mammen \& Tsybakov (1999), Tsybakov (2004), Scott \& Nowak (2006)

Binary Search and Learning by Queries

Rivest, Meyer, \& Kleitman (1980), Hegedüs (1995), Hellerstein et al (2006), Karp \& Kleinberg (2007)

Channel Coding with Feedback (just the classics) Horstein (1963), Schalkwijk \& Kailath (1966), Burnashev \& Zigangirov (1974), Burnashev (1976)

