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Abstract

A selective sampling procedure called dis-
tilled sensing (DS) is proposed, and shown to
be an effective method for recovering sparse
signals in noise. Based on the notion that it is
often easier to rule out locations that do not
contain signal than it is to directly identify
non-zero signal components, DS is a sequen-
tial method that systematically focuses sens-
ing resources towards the signal subspace.
This adaptivity in sensing results in rather
surprising gains in sparse signal recovery—
dramatically weaker sparse signals can be
recovered using DS compared with conven-
tional non-adaptive sensing procedures.

1 INTRODUCTION

Consider the following canonical signal model.

Xi ∼ N (µi, 1) , i = 1, . . . , n, (1)

where N (µi, 1) denotes the normal distribution with
mean µi and unit variance. The signal µ =
(µ1, . . . , µn) is sparse if most of the components µi are
zero. Identifying the locations of the non-zero compo-
nents based on the data X = (X1, . . . , Xn) when n is
very large is a fundamental problem arising in many
applications, including fMRI (Genovese et al., 2002),
microarray analysis (Pawitan et al., 2005), and astro-
nomical surveying (Hopkins et al., 2002). A common
approach in these problems entails coordinate-wise
thresholding of the observed data X at a given level,
identifying the locations whose corresponding obser-
vation exceeds the threshold as signal components.
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Among such methods, false-discovery rate (FDR) anal-
ysis (Benjamini and Hochberg, 1995) tends to be the
procedure of choice because it is less conservative than
Bonferroni correction, making it more useful in prac-
tice, and because it enjoys asymptotically optimal
performance characteristics (Abramovich et al., 2006;
Benjamini and Hochberg, 1995; Donoho and Jin, 2006;
Donoho and Jin, 2008; Jin, 2003).

Suppose that the number of non-zero components of µ
grows sublinearly in n according to n1−β for β ∈ (0, 1),
and that each non-zero component takes the same
(positive) value

√
2r log n for r > 0. For a given re-

covery procedure, define the false-discovery proportion
(FDP) to be the number of falsely discovered compo-
nents relative to the total number of discoveries, and
the non-discovery proportion (NDP) to be the number
of non-zero components missed relative to the total
number of non-zero components. The asymptotic lim-
its of sparse recovery for data collected according to (1)
are sharply delineated in the (β, r) parameter space.
Specifically, if r < β, no recovery procedure based on
coordinate-wise thresholding of the observed data can
drive the FDP and NDP to zero as n → ∞. But,
when r > β, there exists a recovery procedure based
on coordinate-wise thresholding that drives both the
NDP and FDP to zero as n → ∞. Thus, the rela-
tion r = β defines a sharp asymptotic boundary in the
parameter space, identifying when sparse signals ob-
served under the model (1) can be reliably recovered.
Under similar sparse signal and noise models, several
related works established sharp asymptotics in signal
estimation and classification settings (Abramovich et
al., 2006; Donoho and Jin, 2006; Donoho and Jin,
2008; Jin 2003).

Suppose that instead of a single observation of a sparse
signal in noise, one were able to take multiple ‘looks,’
possibly adjusting the focus in a sequential fashion.
Similar adaptive methods have been proposed in the
signal processing literature (Rangarajan, 2007), and
they certainly are conceivable in applications such as
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microarray analysis and astronomical surveying. Here
we consider an approach based on the idea that af-
ter the first look, one might be able to rule out a
large number of locations where the signal is proba-
bly not present, and then focus sensing resources into
the remaining locations in question. Formalizing this
idea, we show that for the same budget of sensing re-
sources, sequential adaptive sensing procedures dra-
matically outperform non-adaptive procedures, result-
ing in different scaling laws in terms of estimability.
Rather than requiring that the non-zero components
obey µi >

√
2β log n, we show that a novel adaptive

sensing procedure called distilled sensing (DS) guaran-
tees that sparse signals at level µi = α(n), where α(n)
is any positive monotone diverging sequence in n that
exceeds the m-fold iterated logarithm function,

log[m] n = log log . . . log n︸ ︷︷ ︸
repeated m times

,

for an arbitrary finite integer m, can be recovered in
the sense that there exists a coordinate-wise threshold-
ing procedure that sends the FDP and NDP to zero as
n → ∞. In other words, DS can detect dramatically
weaker signals than non-adaptive methods.

The paper is organized as follows. In Section 2 we re-
view the conventional non-adaptive approach to sparse
recovery. We introduce our adaptive sensing tech-
nique (DS) in Section 3, and in Section 4 we state our
main results, that DS enables the recoverability of sig-
nificantly weaker signals than standard, non-adaptive
methods. Section 5 provides numerical simulations of
DS, and a short discussion appears in Section 6. Proofs
of the main results are given in the Appendix.

2 SPARSE RECOVERY BY
NON-ADAPTIVE SENSING

Suppose we observe a n × 1 signal µ in noise accord-
ing to the model (1). The signal µ is assumed to
be sparse—that is, most of the components of the
signal are equal to zero. Define S = {i : µi 6=
0, i = 1, . . . , n}. The elements of S are called the
signal components, and the elements in the comple-
ment set, Sc = {1, . . . , n} \ S, are called null com-
ponents. The goal of a signal recovery procedure is
to identify the signal components (in other words, es-
timate S) using the observed data X. Let Ŝ(X) be
the outcome of a given signal recovery procedure. De-
fine the false-discovery proportion (FDP) to be the
ratio between the number of falsely-discovered sig-
nal components and the total number of discovered
components, FDP =

∣∣∣Ŝ(X) \ S
∣∣∣ /

∣∣∣Ŝ(X)
∣∣∣ , and de-

fine the non-discovery proportion to be the ratio be-
tween the number of undiscovered signal components

and the total number of signal components, NDP =∣∣∣S \ Ŝ(X)
∣∣∣ /

∣∣∣S
∣∣∣ . An effective signal recovery proce-

dure must be able to control both the FDP and NDP.

Consider sparse signals having n1−β signal components
each of amplitude

√
2r log n, for some β ∈ (0, 1) and

r > 0, under the model (1). We consider a coordinate-
wise thresholding procedure,

Ŝ(X) = {i : Xi > τ}, τ > 0, (2)

to estimate the locations of the signal components. It
follows from techniques used in (Abramovich et al.,
2006; Benjamini and Hochberg, 1995; Donoho and Jin,
2006; Donoho and Jin, 2008; Jin, 2003) that if r > β,
the procedure (2), with a threshold τ that may depend
on r, β, and n, drives both the FDP and NDP to zero
with probability one as n → ∞. Conversely, if r < β,
then no such coordinate-wise thresholding procedure
can drive the FDP and NDP to zero simultaneously
with probability tending to one as n → ∞. In other
words, for the specified signal parametrization and ob-
servation model, the (β, r) parameter plane is parti-
tioned into two disjoint regions. In the region r > β,
sparse signal components can be reliably located us-
ing a coordinate-wise thresholding procedure. In the
complementary region where r < β, no coordinate-
wise thresholding procedure is reliable in the sense of
controlling both the FDP and NDP. This establishes
a sharp boundary in the parameter space, r = β, for
large-sample consistent recovery of sparse signals.

3 DISTILLED SENSING

We generalize the observation model (1) to allow mul-
tiple observations, indexed by j, of the form

X
(j)
i =

√
φ

(j)
i µi + Z

(j)
i , (3)

for i = 1, 2, . . . , n and j = 1, 2, . . . , k, where each φ
(j)
i

is non-negative, and Z
(j)
i

iid∼ N (0, 1). In addition, we
impose the restriction

∑
i,j φ

(j)
i ≤ n, limiting the to-

tal amount of sensing energy. Note that the standard
observation model (1) takes the form (3) with k = 1
and φ

(1)
i = 1 for i = 1, . . . , n. Another possibility is

to make multiple iid observations, but each with only
a fraction of the total sensing energy budget. For ex-
ample, set φ

(j)
i = 1/

√
k, i = 1, . . . , n, for j = 1, . . . , k.

Because of the independence of the Z
(j)
i ,

∑k
j=1 X(j)

is equivalent to X in the standard model in this case
as well. There are obviously many other non-adaptive
choices of {φ(j)

i }i,j that yield the same result. Fur-
thermore, no non-adaptive sensing scheme exists that
can produce better results than those obtained using
observations from the standard model (1).
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Algorithm 1: Distilled sensing.

Input:
Number of observation steps k;
Energy allocation strategy: E(j),

∑k
j=1 E(j) ≤ n;

Initialize:
Initial index set I(1) ←− {1, 2, . . . , n};

Distillation:
for j = 1 to k do

X
(j)
i ={ √

E(j)

|I(j)|µi + Z
(j)
i , i ∈ I(j)

Z
(j)
i , i ∈ I(1) \ I(j)

}
;

I(j+1) ←− {i ∈ I(j) : X
(j)
i > 0};

end

Output:
Final index set I(k);
Distilled observations X

(k)
DS := {X(k)

i : i ∈ I(k)};

Therefore, we are interested here in adaptive, sequen-
tial designs of {φ(j)

i }i,j that tend to focus on the signal
components of µ. In other words, we allow φ

(j)
i to de-

pend explicitly on the past {φ(`)
i , X

(`)
i }i,`<j . The prin-

ciple upon which our procedure is based is simple—
given a collection of noisy observations of the compo-
nents of a sparse vector, it is far easier to identify a
large set of null components (where the signal is ab-
sent) than it is to identify a small set of signal compo-
nents. When multiple observations of each component
are allowed, this principle suggests a process for re-
fining observations—iteratively allocate more sensing
resources to locations that are most promising while
ignoring locations that are unlikely to contain signal
components. This is reminiscent of the purification
that occurs in the process of distillation; hence, we
refer to our procedure as distilled sensing (DS).

Let k denote the number of observation steps in the DS
process, and divide the total budget of sensing energy
among the steps. Each observation takes the form (3),
where the sensing energy allocated to that observation
step is distributed equally among the set of locations of
interest at that step. Following each of the first k − 1
observation steps, a refinement or distillation is per-
formed, identifying the subset of locations where the
corresponding observation is positive. The rationale is
that it is highly improbable that the signal (which is
assumed to be positive) is present at locations where
the observation is negative. The algorithm terminates
after the final observation, and the output consists of
the final observations and the set of locations that were
measured in the last step. A pseudocode description

of DS appears as Algorithm 1.

To quantify the performance of DS, we will show that
each distillation step retains almost all of the loca-
tions corresponding to signal components, but only
about half of the locations corresponding to null com-
ponents. When the signal µ is sparse, this implies
that the effective dimension is roughly halved at each
step. A judicious allocation of sensing energy over ob-
servation steps provides increasing sensing energy per
location in each subsequent step, resulting in a net
exponential boost in the effective amplitude of each
measured signal component. As a result, applying a
coordinate-wise thresholding procedure to the output
observations of DS results in significant improvements
in recovery compared to procedures that utilize non-
adaptive sensing, as shown in the next section.

4 MAIN RESULTS

We use an energy allocation scheme designed to bal-
ance the probabilities of successful retention of signal
components at each step, by allocating a larger por-
tion of the sensing energy to the first steps and de-
creasing the energy used in later steps when there are
fewer locations to observe. The exponential decrease
in the number of observed locations at each step sug-
gests that the sensing energy allocated to each step
can also decrease exponentially. To accomplish this
we allocate energy for the first k−1 steps according to
the entries of a geometric progression, and put all re-
maining energy on the last step. For a fixed parameter
0 < ∆ < 1, the energy allocation scheme is

E(j) =





∆n
2

(
1− ∆

2

)j−1
, j = 1, . . . , k − 1

n
(
1− ∆

2

)k−1
, j = k





, (4)

and the total energy expended satisfies
∑k

j=1 E(j) = n.

Our first main result quantifies the performance gain
provided by distilled sensing (DS) when the number
of observation steps is fixed. The result, stated be-
low as a theorem, establishes an expanded region of
large-sample consistent recovery in the (β, r) parame-
ter space. The proof is given in the Appendix.

Theorem 4.1. Let k be a positive integer, and con-
sider applying the k-step DS procedure using the sens-
ing energy allocation strategy described in (4) with
fixed parameter 0 < ∆ < 1, to sparse signals µ ∈
Rn having n1−β signal components each of amplitude√

2r log n, for some β ∈ (0, 1) and r > 0. If r >
β/(2−∆)k−1, there exists a coordinate-wise threshold-
ing procedure of X

(k)
DS of the form (2) that drives both

the FDP and NDP to zero with probability tending to
one as n →∞.
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In other words, this result shows that a small num-
ber of observation steps leads to a significant improve-
ment in terms of recoverability—the minimum signal
amplitude required for consistent recovery decreases
exponentially as a function of the number of observa-
tion steps in the DS procedure. A natural question
arises as to whether the number of steps can be large
enough, so that signals whose amplitudes grow (with
the dimension n) slower than

√
log n can be recovered.

We address this question here by letting the number of
observation steps tend to infinity slowly as a function
of n. The result is the following theorem, for which
the proof appears in the Appendix.

Theorem 4.2. Using the sensing energy allocation
strategy described in (4) with fixed parameter 0 < ∆ <
1, let

k = 1 +
⌈

log log n

log (2−∆)

⌉
,

and apply the k-step DS procedure to sparse signals µ ∈
Rn having n1−β signal components each of amplitude
α = α(n). If α(n) is any positive monotone diverging
sequence in n that exceeds the m-fold iterated logarithm
log[m] n for some finite integer m, then there exists a
coordinate-wise thresholding procedure of X

(k)
DS of the

form (2) that drives both the FDP and NDP to zero
with probability tending to one as n →∞.

In other words, DS can result in dramatic improve-
ments in recoverability, as it succeeds at recovering
signals whose amplitudes are vanishingly small rela-
tive to those of signals that can be recovered using the
best non-adaptive methods.

5 EXPERIMENTAL EVALUATION

Our theoretical analysis establishes that DS is consid-
erably more powerful than conventional non-adaptive
sensing in the large-sample regime. In this section we
examine the finite-sample performance of DS with a
simulation experiment motivated by astronomical sur-
veying (Hopkins et al., 2002). For recovery, we apply
(2), using the data-dependent threshold identified by
the Benjamini and Hochberg procedure at a specified
FDR level, where FDR is defined as the expected value
of the FDP. We call this recovery BH thresholding.

Fig. 1(a) depicts a portion of a real radio tele-
scope image collected by the Phoenix Deep Survey
(www.physics.usyd.edu.au/∼ahopkins/phoenix/).
The image size is 256 × 256 pixels and 533 pixels
have nonzero amplitudes of 2.98 (implying β = 0.43
and r = 0.4). Fig. 1(b) depicts a simulated noisy
version of the image, equivalent to a collection of
non-adaptive observations from the model (1), where
to improve visualization, locations whose correspond-

(a) (b)

(c) (d)

Figure 1: Experimental validation of DS procedure.
Panels (a) and (b) show a noiseless radio telescope
image and a simulated noisy version of the image, re-
spectively. Panel (c) shows the result of applying BH
thresholding (at FDR level 0.05) to the data in (b),
while applying BH thresholding at the same level to
the output of the DS procedure with ∆ = 0.9 and
k = 5 gives the result depicted in panel (d).

ing observations were negative are mapped to black
(amplitudes of positive observations are unaltered).
Fig. 1(c) shows the result of applying BH thresholding
at FDR level 0.05 to the non-adaptive observations,
and Fig. 1(d) shows the output of DS with ∆ = 0.9
and k = 5 after BH thresholding at the same level (we
chose ∆ here to be conservative—in practice, larger
values of ∆ allocate more sensing energy to earlier
steps, resulting in fewer total non-discoveries). Note
that considerably more “stars” are recovered by DS.

For the same experiment, we also examine the bene-
fit of DS in terms of false and non-discovery propor-
tions. For each method we computed the empirical
NDP for a range of FDR levels. The curves in Fig. 2
show empirical NDP vs. empirical FDP for 10 trials of
each procedure (solid lines for non-adaptive sampling,
dashed lines for DS with ∆ = 0.9 and k = 5). For the
same FDP, DS yields lower NDPs than non-adaptive
sampling, except sometimes at very high FDP levels,
quantifying the improvement that is observed when
visually comparing Fig. 1(c-d).



Haupt, Castro, Nowak

0 0.5 1
0

0.5

1

FDP

N
D
P

Figure 2: NDP vs. FDP for 10 independent trials
of each procedure applied to the noisy star recovery
task whose one-trial results are depicted graphically
in Fig. 1. Curves for non-adaptive sampling followed
by BH thresholding are solid lines, while curves for
DS (∆ = 0.9, k = 5) followed by BH thresholding are
dashed lines. The separation of curve clusters illus-
trates the improvement of DS per trial and on average.

6 DISCUSSION

A fundamental difference between non-adaptive sens-
ing and DS can be understood by comparing false and
non-discovery criteria. Recovery procedures based on
non-adaptive sampling methods must control the FDP
and NDP simultaneously, while each step of DS only
controls the the number of non-discoveries (keeping it
near zero), and allows the number of false discoveries
to remain large (nearly all discoveries are false when
the signal is sparse). Simultaneous FDP and NDP con-
trol for DS is performed only after the last observation
step, when sensing resources have been efficiently fo-
cused into the signal subspace.

An alternate way to evaluate DS is to compare the
minimal sensing energy budget required to achieve the
same large-sample performance as non-adaptive sens-
ing methods (recoverability only when r > β). The re-
sults obtained here imply that procedures based on DS
will be able to recover the same signals as non-adaptive
sensing methods using an energy budget that grows
only sublinearly with n, implying that DS can recover
signals using less sensing energy (or in less time) than
what is required by non-adaptive sensing methods.

While the theoretical results presented here are asymp-
totic in nature, the performance of DS can also be
quantified in finite-dimensional settings using the in-
termediate result (Theorem 7.3) in the Appendix.
Rather than exhibiting sharp asymptotics, the efficacy
of DS in finite-dimensional problems is quantified by
probabilities of success that vary depending on r, β,
∆, and n. In addition, in finite-dimensional applica-
tions, DS could be modified to improve the retention

of true signal components, at the expense of rejecting
fewer null components, by selecting a less aggressive
(slightly negative) threshold at each step of the DS
procedure.

The proposed DS procedure can also be applied to
more general classes of signals, such as those for which
µ has both positive and negative values. In this case,
one approach would be to split the budget of sens-
ing energy in half, and execute the DS procedure once
assuming the signal components are positive as de-
scribed above, and again assuming the signal compo-
nents are negative (retaining locations at each step
for which the corresponding observation is negative).
The final (composite) set of observations could then
be subjected to standard FDR controlling procedures.

Finally, we note that the results presented here
(namely Theorem 7.3) also imply that DS followed by
a recovery procedure of the form (2), but where se-
lection of the threshold does not require prior knowl-
edge of the signal amplitude or sparsity parameters,
will recover signals that are potentially much more
sparse than those described above. Specifically, sig-
nals exhibiting general sublinear sparsity having s(n)
signal components each with amplitude at least α(n),
where s(n) and α(n) are each positive monotone di-
verging sequences in n and α(n) exceeds some fi-
nite iteration of the logarithm function, such that
α(n)·s(n) > c log log log n for some c depending on the
energy allocation parameter ∆, are recoverable using
the adaptive DS procedure. In the interest of space, we
relegate a thorough exposition of this to future work.

7 APPENDIX

Establishing the main results of the paper amounts to
counting how many locations corresponding to signal
and null components are retained by thresholding the
observations at level zero in each distillation step. We
begin by considering the signal components.
Lemma 7.1. Consider a vector µ with s components,
each of amplitude α > 0, observed according to the
model Xi =

√
φµi+Zi, where Zi is a collection of inde-

pendent N (0, 1) noises and φ > 0 denotes the amount
of sensing energy allocated to each location. When the
amplitude satisfies α ≥ 2/

√
φ, the number of compo-

nents retained by thresholding the observations at the
level zero, denoted s̃, satisfies (1− ε) s ≤ s̃ ≤ s with
probability at least

1− exp

(
−α · s

4

√
φ

2π

)
,

where

ε =
1
α

√
1

2πφ
≤ 1

2
√

2π
.
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The upper bound on ε follows from the condition on
α, and ensures that the fraction of vector components
retained is bounded away from zero.

Proof. The proof amounts to counting the num-
ber of components retained by thresholding. For
that, we utilize a standard bound on tail proba-
bilities of Gaussian random variables, which states
that if Z ∼ N (γ, 1) for γ > 0, then Pr (Z < 0) ≤
(γ
√

2π)−1 exp
(−γ2/2

)
.

To each component observation Xi, assign a Bernoulli
random variable Ti = 1{Xi>0}, which is equal to one
whenever the observation exceeds 0, and zero other-
wise. Let p = Pr(Ti = 1). The number of vector
components whose observations exceed the threshold,
s̃ =

∑
i Ti, is a Binomial random variable, with

1− p ≤ 1
α

√
1

2πφ
exp

(
−α2φ

2

)
.

Establishing the lemma amounts to quantifying the
probability that s̃ ≥ (1 − ε)s for an appropriately
chosen ε. To that end, we use a bound on the tail
probability of the Binomial distribution (Chernoff,
1952). Namely, for a Binomial(n, p) random variable
B, whenever b < E[B] = np,

Pr (B ≤ b) ≤
(

n− np

n− b

)n−b (np

b

)b

.

In our context, this result implies

Pr (s̃ ≤ (1− ε)s)

≤
(

1− p

ε

)εs (
p

1− ε

)(1−ε)s

, (5)

provided ε > 1− p, which is satisfied by the choice

ε =
1
α

√
1

2πφ
.

Now, notice that when α > 2/
√

φ, the condition

−α2φεs

2
+ (1− ε)s log

(
1

1− ε

)
≤ −αs

4

√
φ

2π
,

obtained by upper-bounding the logarithm of the
right-hand side of (5), holds for any ε ∈ (0, 1). The
result follows from exponentiating this last bound.

Next, we quantify how many of the null components
are retained by each thresholding step.

Lemma 7.2. Consider a vector µ with z components,
each of amplitude 0, observed according to the model
Xi =

√
φµi + Zi, where Zi is a collection of indepen-

dent N (0, 1) noises and φ > 0 denotes the amount

of sensing energy allocated to each measured location.
For any ε0 < 1/2, the number of components retained
by thresholding the observations at the level zero, de-
noted z̃, satisfies (1/2− ε0) z ≤ z̃ ≤ (1/2 + ε0) z, with
probability at least 1− 2 exp

(−2zε20
)
.

Proof. To each observation Xi, assign a Bernoulli ran-
dom variable Ti = 1{Xi>0} which takes the value one
when the corresponding observation exceeds 0 and
zero otherwise. Since each observation is of noise
only, the number of vector components whose cor-
responding observation exceeds the threshold, z̃ =∑

i Ti, is a Binomial random variable with probabil-
ity 1/2. Applying Hoeffding’s inequality we obtain
Pr (|z̃ − z/2| > ε0z) ≤ 2 exp

(−2zε20
)
, which holds for

any ε0 > 0. Imposing the restriction ε0 < 1/2 guaran-
tees that the fraction of components retained is within
(0, 1).

Taken together, the lemmata above establish that by
thresholding at level zero, almost all of the signal com-
ponents and about half of the zero components are
retained with high probability. Incorporating the ge-
ometric allocation of sensing energy per step specified
in (4), we obtain the following.
Theorem 7.3. Let µ ∈ Rn be a sparse signal having
s > 0 signal components each of amplitude α, where
α > 4/

√
∆, and z = n−s > s null components. In the

DS procedure of Algorithm 1, let 1 < k ≤ 1+log2 (z/s),
let ∆ be a fixed parameter satisfying 0 < ∆ < 1 − 2ε0
for some ε0 < 1/2, and let the energy allocation E(j)

be as described in (4). For j = 1, . . . , k − 1, define

ε(j) =
1
α

√
1

2πξ(j)
,

where

ξ(j) =
∆
4

(
2−∆
1 + 2ε0

)j−1

.

Then, with probability at least

1− (k − 1) exp


−α · s

8
·
√

∆
2π

·
k−2∏

j=1

(
1− ε(j)

)



−2(k − 1) exp

(
−2 · z · ε20 ·

(
1
2
− ε0

)k−2
)

,

the output of the DS procedure, X
(k)
DS, is equivalent in

distribution to a single collection of noisy observations
of a vector µeff ∈ Rneff according to the observation
model (1). The number of signal components in µeff

is denoted by seff and satisfies

s

k−1∏

j=1

(
1− ε(j)

)
≤ seff ≤ s,
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the effective signal length neff satisfies

s
k−1∏

j=1

(
1− ε(j)

)
+ z

(
1
2
− ε0

)k−1

≤ neff ≤

s + z

(
1
2

+ ε0

)k−1

,

and the effective observed amplitude αeff satisfies

αeff ≥ α

√
n (1−∆/2)k−1

s + z (1/2 + ε0)
k−1

.

Proof. We begin by applying the union bound to the
result of Lemma 7.2 to enforce the condition for each
of the first k − 1 distillation steps. Using superscripts
on z and s to index the observation step, such that
z(1) = z and s(1) = s, for ε0 < 1/2, the bounds

z(1)

(
1
2
− ε0

)j−1

≤ z(j+1) ≤ z(1)

(
1
2

+ ε0

)j−1

hold simultaneously for all j = 1, 2, . . . , k − 1 with
probability exceeding

1− 2(k − 1) exp

(
−2z(1)ε20

(
1
2
− ε0

)k−2
)

.

As a result, with the same probability, the total num-
ber of locations in each set I(j) satisfies |I(j)| ≤
s(1) + z(1)

(
1
2 + ε0

)j−1, for j = 1, 2, . . . , k. Using these
upper bounds and the energy allocation rule (4), we
can lower bound the sensing energy per location at
each step, φ

(j)
i = E(j)/|I(j)|, for i ∈ I(j)—specifically,

φ
(j)
i ≥




∆n(1−∆/2)j−1

2(s(1)+z(1)(1/2+ε0)
j−1) , j = 1, . . . , k − 1

n(1−∆/2)k−1

s(1)+z(1)(1/2+ε0)
k−1 , j = k





,

for i ∈ I(j) (and φ
(j)
i = 0 for i /∈ I(j)). Notice that

when k ≤ 1 + log2 (z(1)/s(1)), for each i ∈ I(j),

φ
(j)
i ≥





∆
4

(
2−∆
1+2ε0

)j−1

, j = 1, . . . , k − 1

1
2

(
2−∆
1+2ε0

)k−1

, j = k





.

Since ∆ < 1−2ε0, this shows that the amount of sens-
ing energy allocated to each retained location increases
exponentially with the number of observation steps.

Now, conditioned on the above event, we can invoke
Lemma 7.1 and apply the union bound again so that
with probability at least

1− (k − 1) exp


−α · s(1)

8
·
√

∆
2π

·
k−2∏

j=1

(
1− ε(j)

)

,

when α ≥ 4/
√

∆, the bounds
(
1− ε(j)

)
s(j) ≤ s(j+1) ≤ s(j)

hold simultaneously for all j = 1, 2, . . . , k − 1.

Applying the union bound to both composite events,
we obtain that with the specified probability, the num-
ber of signal and null components present in the kth
observation step are given by s(k) and z(k), respec-
tively, as defined above. Thus, the final effective sig-
nal dimension is s(k) + z(k), and the effective observed
amplitude of each signal component is obtained using
the lower bound on φ

(j)
i , establishing the claim.

Before we can prove the main results, we need one fi-
nal lemma quantifying the (limiting) fraction of signal
components retained throughout the DS procedure.

Lemma 7.4. Let g = g(n) and k = k(n) be positive
monotone diverging sequences in n, where g(n) exceeds
the m-fold iteration log[m] n for some finite integer m
and k(n) ≤ n. Define ε(j)(n) = c−j/g(n) for some
constant c > 1, and assume ε(k)(n) < 1. Then

lim
n→∞

k∏

j=1

(
1− ε(j)(n)

)
= 1.

Proof. Since c > 1, (1− ε(j)(n)) < (1− ε(j+1)(n)) and
thus the expression of interest satisfies

(
1− ε(1)(n)

)k

=
(

1− 1
g(n)c

)k

≤
k∏

j=1

(
1− ε(j)(n)

)
.

If k(n)/g(n) → 0 as n → ∞, then the limit of the
left hand side is easily seen to be 1 by a Taylor Series
expansion about ε(1)(n) = 0, and the lemma is estab-
lished. Suppose this is not the case. Then, notice that
for any 1 ≤ k′ < k,

k∏

j=1

(
1− ε(j)(n)

)

=
k′∏

j=1

(
1− ε(j)(n)

)
·

k∏

j=k′+1

(
1− ε(j)(n)

)

(a)

≥
k′∏

j=1

(
1− ε(j)(n)

)
·

k∏

j=k′+1

(
1− ε(k

′+1)(n)
)

(b)

≥
k′∏

j=1

(
1− ε(j)(n)

)
·
(
1− ε(k

′+1)(n)
)k

,

where (a) follows because c > 1, and (b) is the result of
multiplying by additional terms that are positive and
less than one. Now, choosing k′ so that ck′+1 > k2, say
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k′ = max{b2 logc kc, 0}+ 1, is sufficient to ensure that
kεk′+1(n) → 0, and thus limn→∞(1− ε(k

′+1)(n))k = 1
by a Taylor Series argument. In this case we have

lim
n→∞

k∏

j=1

(
1− ε(j)(n)

)
≥ lim

n→∞

k′∏

j=1

(
1− ε(j)(n)

)
.

Now, either k′(n)/g(n) → 0 as n → ∞ and the
limit of the lower bound is 1 (by a Taylor Series ar-
gument), or we repeat the process above by intro-
ducing some k′′ < k′ such that ck′′+1 > (k′)2, say
k′′ = max{b2 logc k′c, 0} + 1 ∼ logc logc k. Since
g(n) exceeds a finite iteration of the log function and
k(n) ≤ n, this reduction process will eventually termi-
nate in a finite number of steps, and the limit in this
terminating case will be 1 by a Taylor Series argument,
establishing the claim.

7.1 PROOF OF THEOREM 4.1

Let s = n1−β for some β ∈ (0, 1), let α =
√

2r log n
for some r > 0, and let k ∈ N be a fixed integer.
Choose ε0 = n−1/3 and ∆ < 1 − 2ε0, and note that
all of the conditions of Theorem 7.3 are satisfied when
n > exp (8/∆r). By Lemma 7.4 we have that

lim
n→∞

k−1∏

j=1

(
1− ε(j)

)
= 1,

which is easy to see by making the substitutions

g(n) =

√
πr∆(1 + 2ε0) log n

2−∆
, c =

√
2−∆
1 + 2ε0

.

Thus, we obtain that with probability tending to
one as n → ∞, seff → s, neff → s +
z · 2−(k−1), and αeff ≥

√
2r(2−∆)k−1 log n >√

2r(2−∆)k−1 log neff . Leveraging the results in the
non-adaptive setting, there exists a thresholding pro-
cedure of X

(k)
DS of the form (2) that will drive the FDP

and NDP to zero with probability tending to one as
n →∞ whenever r(2−∆)k−1 > β, as claimed.

7.2 PROOF OF THEOREM 4.2

Let s = n1−β for some β ∈ (0, 1), and let α = α(n)
be any positive monotone diverging sequence in n ex-
ceeding the m-fold iteration log[m] n for an arbitrary
finite integer m. Let the number of observation steps
be

k = k(n) = 1 +
⌈

log log n

log (2−∆)

⌉
.

Choose ε0 = n−1/3 and ∆ < 1 − 2ε0. Applying The-
orem 7.3 and Lemma 7.4, we obtain that with proba-
bility tending to one as n →∞, seff → s,

neff → s +
z

(log n)log (2)/ log (2−∆)

and αeff ≥ α
√

log n > α
√

log neff . Since α = α(n) di-
verges, for large enough n the effective observed ampli-
tude will exceed

√
2β log neff for any fixed β. Now, ap-

plying the non-adaptive results, there exists a thresh-
olding procedure of X

(k)
DS of the form (2) that will drive

the FDP and NDP to zero with probability tending to
one as n →∞.
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