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Abstract—Recent advances in compressive sensing (CS) have estab-
lished that high-dimensional signals that possess sparse representations in
some basis or dictionary can be accurately recovered from relatively few
linear measurements. As a result, CS strategies have been proposed and
developed in a number of application domains where sensing resource
efficiency is of primary importance. This paper examines a class of
compressive anomaly detection tasks, where the aim is to identify the
locations of a nominally small number of outliers in a large collection
of data (which may be scalar or multivariate) using a small number of
observations of the form of linear combinations of subsets of the data. We
introduce a generalized notion of sparsity termed here as saliency, and
establish that a novel sensing and inference technique called Compressive
Saliency Sensing (CSS), comprised of a randomized linear sensing strategy
and associated computationally efficient inference procedure based on
techniques from group testing, can accurately identify the locations of
k outliers in a collection of n items from only m = O(k logn) linear
measurements. We describe several inference tasks to which our approach
is suited, including “traditional” k-sparse support recovery problems;
identification of k outliers in the “simple” signal model of Donoho
and Tanner, characterized by nominally binary vectors having k entries
strictly in (0, 1); and identification of vectors that are outliers from a
common (low-dimensional) linear subspace.

I. INTRODUCTION

Let X = {X1, . . . ,Xn} denote a collection of n individual
data elements, where for a field F and integer p ≥ 1 we have that
Xj ∈ Fp for all j; for concreteness, in what follows we take F = R.
We suppose that a small number of the n data elements of X are
“outliers,” in the sense that they exhibit characteristics that differ from
those of the bulk of the data (in a specific manner to be described
below). Our overall aim is to identify these data outliers, using only a
small number of measurements, in the form of linear combinations of
elements of X. Our approach is motivated by, and can be viewed as
an extension of, compressive sensing (CS) techniques [1], [2], which
leverage sparsity for inference tasks performed on undersampled data.

We introduce a generalized notion of sparsity that we refer to as
saliency – a description chosen to embody the notion that the data
outliers are deemed so merely by virtue of their deviation from the
characteristics exhibited by the bulk of the data – which may be
formalized as follows. Suppose that most of the data elements can be
described as elements of a set Z , which we refer to as the “common
set.” The outliers of interest, then, are elements of X not belonging
to Z . In an analogous manner to the notion of signal support in
traditional sparse data models, we define the salient support of X in
terms of the set Z , as

salsuppZ(X) , { j : Xj /∈ Z } , (1)

and we say that X is k-salient with respect to the set Z when
|salsuppZ(X)| = k. In what follows, we will often simply refer
to X as k-salient when the set Z is clear from context, and in this
case we write the salient support of X simply as salsupp(X).
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Informally, we may interpret Z as a (possibly infinite and
uncountable) set of possible “uninteresting” elements to which a large
number of the n individual elements of X belong. Traditional sparsity
models, for example, may be described in terms of a (trivial) common
set Z = {0}, and in this case nonzero elements of X are (by contrast)
the “interesting” elements. In this sense, our definition of saliency
necessarily encompasses the traditional notion of sparsity as a special
case, but also provides a more generalized notion of “data sparsity.”

A. Problem Statement

Our problem of interest here amounts to a generalized support
recovery task – we aim to estimate the salient support salsuppZ(X)
of X from compressive measurements. To that end, we suppose that
a total of m observations of X may be obtained, each of which
is a linear combination of the individual elements {Xj}nj=1, where
the scalar coefficients associated with each linear combination are all
elements of some specified coefficient set C ⊆ R. Formally, we obtain
observations Yi of the form

Yi =

n∑
j=1

Ai,j Xj , for i = 1, 2, . . . ,m, (2)

where Ai,j ∈ C for all i = 1, . . . ,m and j = 1, . . . , n. We seek
an estimate Ŝ = ŜZ

(
{Yi}mi=1 , {Ai,j}(i,j)∈{1,...,m}×{1,...,n}

)
that

is an accurate estimate of the true salient support salsupp(X).

B. Assumptions

We introduce two assumptions on the common set Z and the
coefficient set C that, when satisfied, provide sufficient conditions
under which our inference approach described in the following section
will succeed in identifying the salient support of data X from
compressive measurements. Specifically, we will be interested here in
settings where the pair {Z, C} satisfy the following two assumptions:

Assumption A1 (Restricted Closure Under Addition). For any
finite integer L ∈ N, if c` ∈ C and X` ∈ Z for all ` = 1, 2, . . . , L,
then

∑L
`=1 c`X` ∈ Z .

Assumption A 2 (Single Outlier Identifiability). For any finite
integer L ∈ N, if c` ∈ C and z` ∈ Z for all ` = 1, 2, . . . , L− 1, but
zL /∈ Z and cL ∈ C \ {0}, then

∑L−1
`=1 c`X` + cLXL /∈ Z .

In words, assumption A1 specifies that the set Z is closed under
certain (but not necessarily all) linear combinations – precisely we
require closure only under linear combinations where the coefficients
of each element in the combination are elements of C. Assumption
A2 specifies that any linear combination comprised of elements of Z
(with coefficients in C) that also contains exactly one element that is
not in Z (scaled by a nonzero coefficient from C), will not belong to
Z . For the sake of illustration, we identify below several examples of
pairs {Z, C} that satisfy the assumptions A1-A2 above, and describe
each in terms of an associated salient support recovery task.



1) Sparse Support Recovery: As noted above, the conventional
sparsity model may be described in terms of the common set
Z = {0}. Clearly, assumption A1 holds here, for example, when the
coefficient set C = R (many others choices of C are also valid for this
particular Z). Further, in this case assumption A2 also holds, since
any linear combination comprised of a number of “zeros” and one
“nonzero” element (with nonzero coefficient) will itself be nonzero.
In this example, the salient support recovery task is traditional support
recovery for k-sparse vectors.

2) Identifying Outliers in “Simple” Signals: In the context of a
body of work aimed at identifying necessary and sufficient conditions
for sparse recovery using convex programming methods, Donoho and
Tanner introduced in [3] the notion of k-simple signals, which are
nominally binary vectors having n−k entries that are elements of the
set {0, 1} and k entries that are strictly in (0, 1). Here, assumptions
A1-A2 hold if we choose Z = Z, the set of all real integers, and let
C = {0, 1} (again, other choices of C are possible, including C = Z).
The salient support recovery task here amounts to identifying the
locations of the k non-binary elements in a k-simple signal.

3) Finding Vector Outliers from a Linear Subspace: Consider a
collection of linearly independent vectors ui ∈ Rp, i = 1, . . . , d.
Collectively, the vectors span a d-dimensional linear subspace of Rp;
for shorthand, let us denote U , span (u1, . . . ,ud) = {v ∈ Rp :
v =

∑d
`=1 α`u`, α` ∈ R ∀ `}. In this case, assumptions A1-A2 hold

for the choice Z = U and C = R, provided that U 6= Rp (i.e., the
subspace U must be a proper subspace of Rp). This follows from the
fact that linear subspaces are closed under (all) linear combinations,
while sums containing one vector having a component outside of the
d-dimensional subspace will itself be outside of the subspace. Here,
the salient support recovery task corresponds to identifying the k
(vector) outliers from the subspace U .

C. Our Contribution

Our main contribution here is to establish that, for data models
characterized by pairs {Z, C} satisfying assumptions A1-A2 above,
a computationally-efficient sensing and inference approach called
“Compressive Saliency Sensing” (CSS) is a provably accurate method
for salient support identification from compressive measurements. In
the following section we describe the CSS procedure, and we state
and prove our main theoretical result quantifying its performance. A
few conclusions are briefly discussed in Section III.

D. Relation to Existing Works

The idea of using sparse measurement strategies for sparse
inference is related to sketching notions that are, by now, well
studied in the computer science literature – see, for example, [4],
[5]. A number of recent works have examined connections between
sparse sampling, group testing, and sketching ideas, and sparse signal
recovery and compressive sensing tasks including, for example, [6]–
[9]. The essential focus of our effort here amounts to the analysis
of a noisy group testing task, and we note that previous efforts have
examined various aspects of noisy group testing problems [10], and
proposed and analyzed efficient procedures – see, e.g., [11], [12].

We also note the recent work [13] which examines a related
problem to what we examine here – that of identifying the salient
elements in a set of variables, features, or covariates – and establishes
quantitatively similar results to ours for certain sparse recovery tasks,
under a model where data are assumed to be random (iid) quantities
and saliency is quantified by conditional independence conditions.

E. A Note on Notation

In what follows we employ a “MATLAB-inspired” notation to
denote row and column vectors of a given matrix; namely, for a matrix
M, we denote by Mi,: its i-th row, and by M:,j its j-th column. We
define the support of a vector to be the set of locations at which the
vector takes nonzero values; e.g., supp(M:,j) , {i : Mi,j 6= 0}.

II. COMPRESSIVE SALIENCY SENSING

The essential idea underlying our “Compressive Saliency Sens-
ing” (CSS) approach is to “map” the salient support inference
problem to a group testing proxy task, as follows. We associate to
the compressive observations Y = {Y1, . . . ,Ym} a binary vector
y ∈ {0, 1}m, whose i-th element takes the value 1 when Yi /∈ Z and
is zero otherwise, for i = 1, 2, . . . ,m; that is, we let yi = 1{Yi /∈Z},
where 1{·} denotes the indicator function of its argument. Likewise,
to the collection of coefficients {Ai,j} we associate a binary matrix
M ∈ {0, 1}m having elements Mi,j = 1{Ai,j 6=0} for i = 1, . . . ,m
and j = 1, . . . , n. Now, if we interpret x ∈ {0, 1}n as a vector
whose j-th element is 1 if and only if Xj is in the salient support of
X – that is, xj = 1{Xj /∈Z} – then our task of identifying the salient
support of X reduces to the task of identifying the support of the
(binary) vector x from the binary observations y and matrix M. The
overall procedure is depicted as Algorithm 1.

Our approach is simple in principle, though its analysis requires
treatment of subtle issues that arise when mapping the problem to
the binary proxy task. First, it is evident that a significant number of
the elements in the collection of coefficients {Ai,j} for i = 1, . . . ,m
and j = 1, . . . , n should be equal to zero for this approach; if not, the
associated matrix M in the group testing proxy task would contain
mostly 1’s, and group testing strategies applied in this case would be
uninformative. A second (more subtle) point concerns the construction
of the proxy vector y. Even when the coefficients {Ai,j} are chosen
to yield an appropriately sparse matrix M, we still need to ensure
that the individual elements of y are (mostly) accurate. Informally
speaking, we must be able to identify, with some level of certainty
and from the observed data itself, when a linear combination of the
data elements {Xj}nj=1 does or does not contain elements of X not
belonging to the common set Z . For this, we invoke assumptions
A1-A2, which together imply that the proxy task can be treated as
a noisy group testing problem, albeit with a non-standard form of
noise, from the perspective of previous group testing investigations.

A. Theoretical Guarantees

Our main result quantifies the performance of the CSS procedure
described in Algorithm 1.

Theorem 1. Let {Z, C} satisfy assumptions A1-A2, and let X be
k-salient with respect to Z . Choose δ ∈ (0, 1), c, k′ > 0 and
α ∈ (0, 1/5] as fixed parameters. Collect m = dck′ log(n/δ)e
randomized measurements of X via the CSS procedure of Algorithm 1,
and form the support estimate Ŝ, using threshold τ = mα(1−2α)/k′.
If k′ is an upper bound for the true sparsity level (i.e., k′ ≥ k) and
the factor c satisfies c ≥ (2/α2) ·max {k′/k, 1/α}, then the salient
support estimate Ŝ satisfies Pr

(
Ŝ 6= salsupp(X)

)
≤ 2δ, where the

probability is with respect to the randomness of the sensing strategy.

Note that when the parameter k′ does not overestimate the true
saliency level k by too much, so that k′ ≤ βk for some constant
β ≥ 1, it follows that the salient support of X can be accurately



Algorithm 1 Compressive Saliency Sensing

Input:
Common set: Z; Coefficient set: C
Error tolerance parameter: δ ∈ (0, 1)
Saliency level parameter: k′ ∈ N
Oversampling factor: c > 0
Threshold parameter: α ∈ (0, 1/5]

Initialize:
Sensing matrix sparsity parameter: q = α/k′

Number of measurements: m = dck′ log(n/δ)e
Threshold: τ = mα(1− 2α)/k′;

Collect Compressive Observations:
Set Ai,j = εi,jci,j where ci,j ∈ C and εi,j

iid∼ Bernoulli(q),
for i = 1, . . . ,m and j = 1, . . . , n

Collect randomized linear observations Yi =
∑n
j=1Ai,jXj ,

for i = 1, . . . ,m
Form Binary Proxies:

Compute M ∈ {0, 1}m×n, where Mi,j = 1{Ai,j 6=0},
for i = 1, . . . ,m and j = 1, . . . , n, and
y ∈ {0, 1}m with yi = 1{Yi /∈Z} for i = 1, . . . ,m

Perform Support Estimation:
Let Ŝτ = {j ∈ {1, . . . , n} : |supp(M:,j) \ supp(y)| ≤ τ}

identified from only m = O(k logn) compressive measurements.
This is intuitively pleasing, as in this sense our result recovers
essentially the same sample complexity identified for a host of
related sparse inference tasks in CS (see, e.g., [1], [2]). The essential
contribution here is in the fact that our result applies also to a broader
class of outlier identification problems characterized by pairs {Z, C}
satisfying assumptions A1-A2, as described above.1

B. Proof of Main Result

By DeMorgan’s Laws and the union bound, we have that

Pr
(
Ŝ 6= salsupp(X)

)
≤∑

j∈salsupp(X)

Pr (|supp(M:,j) \ supp(y)| > τ) +

∑
j /∈salsupp(X)

Pr (|supp(M:,j) \ supp(y)| ≤ τ) . (3)

Our proof proceeds by considering each of the two sums on the right-
hand side of (3) in turn. We note that our analysis here is related
to, and in some sense motivated by, the approach employed in a
related effort [11] that examined noisy group testing problem under
a different error model than we consider here.

To clarify the exposition that follows, we will find it useful to
first introduce the quantity y∗, which we interpret as an ideal or
“error-free” version of the binary vector y. Formally, for x ∈ {0, 1}n
having elements xj = 1{Xj /∈Z}, which are nonzero only at locations
j ∈ salsupp(X), and M ∈ {0, 1}m×n, we introduce the vector
y∗ ∈ {0, 1}m whose elements are given by y∗i =

∨n
j=1 Mi,j ∧ xj ,

1In practice, k′ may be informed by domain knowledge or could be
selected simply as a conservative upper bound. Note also that the parameter
α also shows up the sufficient condition on c (which can be viewed as an
“oversampling factor”). In practice, one would aim to make c as small as
possible, which here motivates that α be taken as large as possible. That α
not exceed 1/5 is a condition of our analysis approach which, on account of
several bounding steps, may not illuminate the best possible constants.

for i = 1, 2, . . . ,m, where the symbols ∧ and ∨ denote, respectively,
the Boolean “and” and “or” operators. In words, an element y∗i of y∗

is equal to 1 if and only if Mi,j = 1 for at least one j ∈ salsupp(X).
Note that this definition is equivalent to the statement

supp(y∗) =
⋃

j∈salsupp(X)

supp(M:,j). (4)

Now, assumption A1 ensures that the (potentially noisy) observation
vector y does not contain “false positives,” but assumption A2 is by
itself not strong enough to rule out “false negatives.” Together, these
imply supp(y) ⊆ supp(y∗). With this, we proceed with the proof.

1) Part 1: Support error bounds for indices j ∈ salsupp(X):
We first consider indices in the true salient support of X, and seek
to obtain an upper bound for the first term on the right-hand side of
(3). To that end, we first fix any j ∈ salsupp(X) and establish an
upper bound on the quantity Pr (|supp(M:,j) \ supp(y)| > τ).

For shorthand, and to clarify the exposition, let us define
εj , |supp(M:,j) \ supp(y)|. Now, note that for y∗ as above, we
have (essentially by construction) that |supp(M:,j) \ supp(y∗)| = 0.
This implies that the (random) quantity εj defined above quantifies the
number of 1’s in y∗ at locations i ∈ supp(M:,j) that are erroneously
“flipped” to 0 in y; that is, εj = |{i ∈ supp(M:,j) : yi 6= y∗i }|.
Note that assumption A2 guarantees only that yi = 1 when
|supp(Mi,:) ∩ salsupp(X)| = 1. It follows that a necessary
condition for any element yi, i ∈ supp(M:,j), to be erroneous
is that the support of the corresponding row Mi,: intersect
salsupp(X) at least twice. Further, since we restrict our attention
to i ∈ supp(M:,j) we know that supp(Mi,:) must intersect
salsupp(X) at least once – at location j; if not, then i /∈ supp(M:,j).
Thus, we have that {i ∈ supp(M:,j) : yi 6= y∗i } ⊆
{i ∈ supp(M:,j) : |supp(Mi,:) \ {j} ∩ salsupp(X) \ {j}| ≥ 1},
implying that we can bound the number of errors using the inequality
εj ≤ ε′j ,

∑
i∈supp(M:,j)

1{|supp(Mi,:)\{j} ∩ salsupp(X)\{j}|≥1}.
Overall, our approach will be to obtain a bound on εj by establishing
a bound on the probability that ε′j exceeds the threshold τ .

Note that the case k = 1 is somewhat trivial as salsupp(X)
contains only a single index – say j – and in this case, we have
necessarily that εj = 0. To address the more general case k ≥ 2, we
recall that the elements of M are iid Bernoulli(q) random variables,
which implies that conditioned on supp(M:,j) the quantity ε′j defined
above is conditionally Binomial(|supp(M:,j)|, γ), with γ = 1− (1−
q)k−1. 2 Further, we have by construction of M that |supp(M:,j)|
is Binomial(m, q) distributed. Overall, then, we have that the random
quantity ε′j is (unconditionally) Binomial(m, qγ) distributed. Further,
since {εj > τ} ⊆ {ε′j > τ} ⊆ {ε′j ≥ τ}, we have that Pr(εj > τ) ≤
Pr(ε′j ≥ τ). Thus, by the Chernoff bound (see, e.g., [14, Theorem
2.3]) we have for any λ ≥ 0 and τ ≥ (1+λ)mqγ, that Pr (εj > τ) ≤
exp

(
−λ

2mqγ
2+λ

)
, implying, in particular, that for τ ≥ 3mqγ, we have

Pr (εj > τ) ≤ exp (−mqγ).

Now, in order to use this bound here, we need to ensure that τ ≥
3mqγ, where γ is as above. From the initializations of Algorithm 1
we have that q = α/k′ for α ∈ (0, 1/5] and τ = mα(1− 2α)/k′ =
mq(1 − 2α). Now, since q ∈ (0, 1) we have that (1 − q)k−1 ≥
(1− q)k ≥ 1−kq where the last inequality follows from Bernoulli’s
Inequality. Thus, γ = 1−(1−q)k−1 ≤ kq = α (k/k′). It follows that

2Here, the specification of γ follows directly from the fact that given
supp(M:,j) the quantity |supp(Mi,:) \ {j} ∩ salsupp(X) \ {j}| is con-
ditionally Binomial(k − 1, q) distributed.



a sufficient condition to ensure that τ ≥ 3mqγ is that mq(1−2α) ≥
3mqα(k/k′), or k′/k ≥ 3α/(1 − 2α). Since 3α/(1 − 2α) ≤ 1 by
choice of α, this condition is satisfied whenever k′ ≥ k, which was
a condition of the Theorem.

Now, let ∆1 ,
∑
j∈salsupp(X) Pr (|supp(M:,j) \ supp(y)| > τ)

and consider the first term on the right-hand side of (3). Under the
conditions specified in Algorithm 1, and when k′ ≥ k we have that
∆1 = 0 when k = 1, while for k ≥ 2, we have by the union
bound that ∆1 ≤ k exp (−mqγ). This implies, in particular, that
for any δ ∈ (0, 1) and k ≥ 1 we have ∆1 ≤ δ provided that m ≥(

1
αγ

)
k′ log

(
k
δ

)
. Now, it is easy to show3 that γ ≥ αk/(2k′) when

k ≥ 2, so that overall ∆1 ≤ δ whenever m ≥
(

2k′

α2k

)
k′ log

(
k
δ

)
.

2) Part 2: Support error bounds for indices j /∈ salsupp(X):
We now consider indices in the complement of the true salient
support of X, and seek to obtain an upper bound for the second
term on the right-hand side of (3). To that end, we first fix any
j /∈ salsupp(X) and establish an upper bound on the quantity
Pr (|supp(M:,j) \ supp(y)| ≤ τ).

Note that since supp(y) ⊆ supp(y∗), where y∗ is
the ideal or “error-free” vector defined above, we have that
|supp(M:,j) \ supp(y∗)| ≤ |supp(M:,j) \ supp(y)|. The implica-
tion is that for any τ , we have {|supp(M:,j) \ supp(y∗)| > τ} ⊆
{|supp(M:,j) \ supp(y)| > τ}. Now, it follows from
this inclusion that Pr (|supp(M:,j) \ supp(y)| ≤ τ)
≤ Pr (|supp(M:,j) \ supp(y∗)| ≤ τ). Our proof proceeds by
deriving an upper bound for the right-hand side of this inequality.

Now, using (4), we have that |supp(M:,j) \ supp(y∗)| =
|supp(M:,j) \

⋃
`∈salsupp(X) supp(M:,`)| = |{ i : {Mi,j =

1} ∩ {
⋂
`∈salsupp(X) {Mi,` = 0} }}|. Thus, it follows that

|supp(M:,j) \ supp(y∗)| is Binomial(m, q(1 − q)k) distributed.
Again we employ the Chernoff bound, which implies here that for
λ ∈ [0, 1], Pr

(
|supp(M:,j) \ supp(y∗)| ≤ (1− λ)mq(1− q)k

)
≤

exp
(
−λ2mq(1− q)k/2

)
. Letting τ = (1 − λ)mq(1 − q)k, and

simplifying, we obtain that for any τ ≤ mq(1− q)k,

Pr (|supp(M:,j) \ supp(y∗)| ≤ τ)

≤ exp

(
−
(
mq(1− q)k − τ

)2
2mq(1− q)k

)
. (5)

In order to use the bound (5) here, we need to ensure that for τ , m,
and q as specified in Algorithm 1, the condition τ ≤ mq(1− q)k is
satisfied. To that end, note that by Bernoulli’s Inequality it is sufficient
to ensure that τ ≤ mq(1 − kq). Using the fact that q = α/k′ and
τ = mα(1 − 2α)/k′ = mq(1 − 2α) we see that this condition
holds whenever k′/k ≥ 1/2, which holds under the condition of the
Theorem that k′ ≥ k. Further, for this choice of τ we can simplify
the Chernoff bound to obtain that

Pr (|supp(M:,j) \ supp(y∗)| ≤ τ)

≤ exp

(
−mq (1− kq − 1 + 2α)2

2(1− q)k

)
≤ exp

(
−α

2mq (2− k/k′)2

2(1− q)k

)
≤ exp

(
−α2mq/2

)
, (6)

where the first inequality follows from Bernoulli’s Inequality applied
to the term (1 − q)k, the second inequality from the specification

3Write k′ = βk for some β ≥ 1. It is easy to see the that bound holds for
k = 2; that it holds for k ≥ 3 follows from a simple monotonicity argument.

of q (and some simplification), and the third inequality follows
since (1 − q)k ≤ 1 and k′/k ≥ 1. Now, we turn our attention
back to the second term on the right-hand side of (3). Let us
denote ∆2 ,

∑
j /∈salsupp(X) Pr (|supp(M:,j) \ supp(y)| ≤ τ). By

the union bound, we have that ∆2 ≤ (n − k) exp
(
−α2mq/2

)
,

which implies that for any δ ∈ (0, 1) we have ∆2 ≤ δ provided
that m ≥

(
2
α3

)
k′ log

(
n−k
δ

)
.

3) Putting the Results Together: Overall, we have established
that for the parameter specifications of Algorithm 1, and when
k′ ≥ k, we have that Pr

(
Ŝ 6= salsupp(X)

)
≤ ∆1 + ∆2 ≤ 2δ

whenever m ≥ max
{ (

2k′

α2k

)
k′ log

(
k
δ

)
,
(

2
α3

)
k′ log

(
n−k
δ

) }
.

The condition m ≥ max
{

2k′

α2k
, 2
α3

}
k′ log

(
n
δ

)
suffices, as claimed.

III. CONCLUSIONS

We have shown that a simple inference approach based on group
testing ideas provably succeeds at identifying the locations of k
outliers in a large data collection, with high probability, given only
m = O(k logn) linear combinations of the data elements. The
inference procedure itself is computationally efficient, requiring at
most O(mn) = O(kn logn) operations, and requires only the storage
and processing of binary data structures. Due to space limitations, we
defer in-depth numerical investigations to future work.
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