1)

a). Bohr postulate combe expressed as:

$$
L_{n}=m_{0} v r_{n}=n \hbar \quad, n=1,2,3, \cdots
$$

m. is election rest mess, v is linear electron velocity,
r_{n} is the radius of orbit.

- Centripedal force on the electron must balance the Coulombic attraction between the nucleus and orbiting electron.

$$
\begin{equation*}
\frac{m_{0} v^{2}}{r_{n}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{n}^{2}} \tag{1}
\end{equation*}
$$

- Kinetic energy $=\frac{1}{2} m_{0} v^{2}=\frac{1}{2} \cdot \frac{q^{2}}{4 \pi \varepsilon_{0} r_{n}}$ by using eq $($.
. from eq (1)

$$
\text { above eq can be } \frac{m 0 g^{4}}{2\left(4 \pi \epsilon_{0} n \hbar\right)^{2}}=\frac{13.6}{n^{2}} \mathrm{eV}
$$

. 50 ,

$$
V=\sqrt{\frac{2 \times 13.6 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}} \times \frac{1}{n}=\frac{2.19 \times 10^{6}}{n} \mathrm{~m} / \mathrm{sec}
$$

\therefore if $n=1, \quad v=2.19 \times 10^{6} \mathrm{~m} / \mathrm{sec}$

$$
\begin{array}{ll}
n=2, & v=1.095 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
n=3, & v=0.73 \times 10^{6} \mathrm{~m} / \mathrm{sec}
\end{array}
$$

b) from Figure $A, 2$,
i)

$$
\begin{aligned}
& E_{3}-E_{2}=\Delta E_{32}=1.89 \mathrm{eV}=\frac{h c}{\lambda} \\
& \Rightarrow \lambda=\frac{h c}{1.89 \mathrm{eV}}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.89 \times 1.6 \times 10^{-19}}=658 \mathrm{~nm}
\end{aligned}
$$

ii) $E_{4}-E_{2}=\Delta E_{42}=2.55 \mathrm{eV}$
$\Rightarrow \lambda=\frac{h c}{2.55 \mathrm{ev}}=487 \mathrm{~nm}$ (between green and blue)
iii)

$$
\begin{aligned}
& E_{5}-E_{2}=\Delta E_{52}=2.86 \mathrm{eV} \\
& \Rightarrow \lambda=\frac{h \mathrm{c}}{2.86 \mathrm{eV}}=435 \mathrm{~nm} \text { (Indigo color) }
\end{aligned}
$$

2)

a)

the removal of G_{a} a foin with three valence electrons leaves five dangling bonds.
the removal of As atom with five Valenc electrons leaves three danging bonds.
b)

When a s_{i} atom with four Valence electron. is inserted into the missing G_{a} site, there is one extra electron.
when a S_{i} a for is inserted into the missing As site, there are one too few bonds to complete the bonding scheme. there is a hole in the bounding schem
c) n-type
the extra electron is released yielding an increase in the electron concentration.
d) p-type

The missing bond is filled yielding an increase in the hole concentration.
e)
i

ii)

3) We assume semiconductor is non de generate. the electron distribution is:

$$
g_{c}(E) f(E)=\frac{N_{c}}{k T} \cdot \frac{1}{1+e^{\left(E_{c}-E_{F}\right) / k T}} \simeq \frac{N_{c}}{k T} e^{-\left(E-E_{F}\right) / k T}
$$

the hole distribution is:

$$
g_{V}(E)[1-f(E)]=\frac{N_{V}}{k_{T}} \cdot \frac{1+e^{\left(\epsilon-E_{F}\right) / k_{T}}-X}{1+e^{\left(E-E_{F}\right) / K_{T}}}=\frac{N_{V}}{k_{T}} \cdot \frac{1}{1+e^{\left(E_{F}-E_{1}\right) / K_{T}}}
$$

Energy band diagrams

Densify of states
\qquad

\qquad Ec

Occupancy
factors factors

Carrier distribution.

4. ar $^{\gamma}=\frac{13.1}{0.06} \times 0.529 A^{\circ}=115.5 \AA$

The volume of the impurity is them.

$$
\begin{align*}
V_{\text {imp. }} & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi x\left(115.5 \times 10^{-8}\right)^{3} \mathrm{~cm}^{3} \tag{6}\\
& =6.454 \times 10^{-18} \mathrm{~cm}^{3}
\end{align*}
$$

\therefore doping concentration density.

$$
N_{d}=\frac{1}{6.454 \times 10^{-18}} \mathrm{~cm}^{-3}=1.55 \times 10^{17} \mathrm{em}^{-3} .
$$

(b) Due to impurity orbitals overlap, an impurity band is created.
According to pauli exclusion primiples, two electrons cannot be the same quantum state. So they become, in spitted state.'

$$
\Longrightarrow E_{D}
$$

(a) Under extremely high doping, (1) the impurity band merge with the conduction band or valence band, As a result the band gap reduced. There are other mechanism which are also responsible to reduce the band gap -
(2) Charge screening.
(3) Loss of the periodic potential dee to the introduction of
 impurity.
5)
a) zero.
by charge neutrality, there are no net charges.
b) material is n-type. free electron density is 8×10^{15} electrons $/ \mathrm{cm}^{3}$
c)

$$
\begin{aligned}
& n p={n i^{2}}^{n} \\
& p=\frac{n_{i}^{2}}{n}=\frac{1.21 \times 10^{20}}{8 \times 10^{15}}=1.51 \times 10^{4} \mathrm{~cm}^{-3}
\end{aligned}
$$

d) ionized donor density is $1.5 \times 10^{16} \mathrm{~cm}^{-3}$
e) neutral donor density is

Very small compare with d)
(1.) a.) Degeneracy $\Longrightarrow 3 k T$ away from band edge

$$
\begin{aligned}
& n=N_{c} e^{-\frac{3 g T}{k T}} \\
& n=N_{c} e^{-3} \Longrightarrow n=10^{20} e^{-3}
\end{aligned}
$$

degenerate for $n>5 \times 10^{18} \mathrm{~cm}^{-3}$ (or Nos)
for p-type material

$$
p=N_{r} e^{-3} \quad p=10^{16} e^{-3}
$$

degenerate for $p>5 \times 10^{14} \mathrm{~cm}^{-3}$ (or Na)
Degeneracy mans that the simple Bolt $=$ man approximation to Fermi-Dirac statistics canst be used a we hove to calculore nip from numerical integration.
b.)

$$
\begin{aligned}
& n_{i}^{2}=\text { NcNVe } e^{-E g / n T} \\
& n_{i} \simeq 1.7 \times 10^{-2 y} \\
& n_{1} \cong 0 \Longrightarrow \text { huge bandgap! }
\end{aligned}
$$

C.)

$$
\begin{aligned}
E_{i}=\frac{E_{c}+E_{c}}{2}+\frac{K T}{2} \ln \frac{N_{0}}{N_{c}} \\
E_{i}=2.5 \mathrm{~V}-12 \mathrm{eV}
\end{aligned}
$$

