Homework # 5 EE 3161 - Spring 2008 Due Friday, April 11 in class

- 1) Problem 10.4 of Pierret. Also, resketch the energy band diagram for each of the four possible bias modes.
- 2) Problem 11.2 of Pierret.
- 3) The I-V characteristics for a pnp transistor in the common base configuration are shown below. At each of the operating points A, B, and C, sketch the minority carrier concentrations in the base vs. *x*. (Assume W << L_p.) Be sure to include the equilibrium concentration as a reference.

- 4) A npn silicon BJT is drawn below. (τ_n and $\tau_p = 1 \mu s$.)
 - a) What is the effective base width?
 - b) What are I_{Ep} , I_{En} , I_{Cp} , and I_{Cn} for $V_{BE} = 0.5V$ and $V_{BC} = -5V$?
 - c) Including base recombination, what are the emitter injection efficiency, base transport factor, and β at the same voltages?
 - d) If the length of the emitter was reduced to $0.3\mu m$, how would the equation for I_{Ep} change? Would this increase or decrease β ?

continued on next page

- 5) Consider the bipolar transistor below. The width of the n-region is 0.6 microns (depletion regions have not been included in this width). The area of the transistor is 1cm².
 - a) For $V_{EB} = 0.5V$ and $V_{EB} = 0.8V$, plot $log(I_C)$ vs. V_{EC} for $V_{EC} < 0$ (assume I_C is ideal; ignore base width modulation, i.e. use V_{bi} to calculate W).
 - b) For the conditions in part a), but now including base recombination, and assuming that $V_{EC} < -1V$, what is I_B?
 - c) For the case $V_{EB} = 0.8V$, and now taking base width modulation into account, replot I_C vs. V_{EC} . What is the Early voltage? (Let $V_{EC} < -1V$.)
 - d) Let $V_{EB} = 0.5V$. At what VEC does punchthrough (base totally depleted) occur?

6) [*Problem 1, midterm exam #2, spring 2007*]

Consider the silicon BJT in the diagram below, biased as shown. The total cross-sectional area of the device is $2mm^2$ and the base width is $3\mu m$. Note that the top is split into two regions, each $1mm^2$ in area. The recombination times in all regions of the device are $0.1\mu s$.

- a) Sketch a band diagram for the device for $V_x = -0.5V$ and $V_z = 5V$. Calculate the position of E_f where relevant. Is the band diagram relevant for both of the top sections?
- b) Write expressions for the currents I_x and I_z . Drop terms that are unimportant, but be sure to state what you are doing. Calculate I_z numerically.
- c) What are the emitter injection efficiency, base transport factor, and beta?
- d) If the device is used as a digital switch, estimate the rise time if I_z is the same as calculated previously and the base current is 5% of that.
- e) Near what V_z does transistor breakdown current become a significant contribution to (e.g. 10% of) I_z ? Is it ever a significant contribution to the base current? Why or why not?

