HWy\# 5 SOLUTION

1) prob. 10.4.
a) For the given doping concentrations, one computes $E_{F}-E_{i}=0.477 \mathrm{eV},-0.358 \mathrm{eV}$, and 0.298 eV respectively in the emitter, base, and collector.
Also, with $N_{D E} \gg N_{A B}$, the $E-B$ depletion width will lie almost exclusively in the base. likewise, the majority of the $C-B$ depletion width will lie in the collector. The diagram produced by BJT-Eband program is displayed below.

b)

c)

$$
\begin{aligned}
\Delta V_{C E} & =\frac{1}{q}\left[\left(E_{F}-E_{j}\right)_{\text {collector }}-\left(E_{F}-E_{i}\right)_{\text {emitter }}\right] \\
& =\frac{K T}{q}\left[\ln \left(N_{D C} / n_{i}\right)-\ln \left(N_{D E} / n_{i}\right)\right] \\
& =\frac{K T}{q} \ln \left(N_{D C} / N_{D E}\right)=-0.179 \mathrm{~V}
\end{aligned}
$$

d) Analogous to $E_{q} 10,3$ in the text,

$$
W=W_{B}-X_{P E B}-X_{P C B}
$$

$$
\text { Where, } x_{p E B} \simeq\left[\frac{2 K_{5} \epsilon_{0}}{q N_{A B}} V_{6 j E B}\right]^{1 / 2}=3.30 \times 10^{-5} \mathrm{~cm}
$$

$$
x_{P C B}=\left[\frac{2 K_{S} \epsilon_{0}}{q N_{A B}} \cdot \frac{N_{D C}}{N_{D C}+N_{A B}} \cdot V_{b j C B}\right]^{1 / 2}=8.82 \times 10^{-6} \mathrm{~cm}
$$

$$
\therefore W=2 \times 10^{-4}-3.30 \times 10^{-5}-8.82 \times 10^{-6}=1.58 \times 10^{-4} \mathrm{~cm}
$$

e)

$$
\begin{aligned}
& \varepsilon_{\max }(E-B)=\frac{g N_{A B}}{K_{S} \epsilon_{0}} X_{P E B}=5.06 \times 10^{4} \mathrm{~V} / \mathrm{cm} \\
& \varepsilon_{m a x}(C-B)=\frac{g \Lambda_{A E}}{k_{s} \epsilon_{0}} x_{B C B}=1.35 \times 10^{4} \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

a') i) active bias mode:
ii) inverted bios mode:

iii) Saturation mode: \qquad
\qquad
iv) Cut off mode:

2) prob. 11.2

a) $\gamma=\frac{I_{E P}}{I_{E P}+I_{E n}}=\frac{I_{I}}{1.001 I_{I}}=0.9990$
b) $\alpha_{T}=\frac{I_{C P}}{I_{E P}}=\frac{0.999 I_{I}}{I_{I}}=0.9990$
c) $\alpha_{d c}=\gamma \alpha_{T}=0.9980$

$$
\beta d c=\frac{\alpha_{d c}}{1-\alpha_{d c}}=499
$$

d) method. 1. $I_{E}=I_{E p}+I_{E n}=1.001 I_{I}$
$I_{c}=I_{c p}+I_{c n}=0.999 I_{I}+10^{-6} I_{I}$
$I_{B}=I_{E}-I_{C}=1.999 \times 10^{-3} \cdot I_{I}$
method 2.
$I_{B 1}=I_{E n}=0.001 I_{I}$
$I_{B 2}=I_{E p}-I_{c n}=0.001 I_{I}$
$I_{B 3}=-I_{C n}=-\left(10^{-6}\right) I_{I}$
$I_{B}=I_{B 1}+I_{B 2}+I_{B 3}=1.999 \times 10^{-3} \cdot I_{I}$
e) Yes. All currents on the figure are constant across the depletion regions. This implies (see subsection 6.1.2) that recombination - generation is negligible in there regions.
3)
i) point A is in active region.

for point $(0) \Delta n_{E}\left(O^{\prime \prime}\right)=n_{E_{0}}\left(e^{q V E s / k T}-1\right)$
" (2) $\triangle P_{B}(0)=P_{B O}\left(e^{q V_{E B / K T}}-1\right)$

" (4) $\Delta n_{C}\left(0^{\prime}\right)=n_{c o}\left(\rho^{q V C B / K T}-1\right)$
\therefore We see $a=b, c=d$.
ii) point B is in onset saturation region.

- VCB have zero Value.

So, $n_{c}(x)=n$ co.
iii) point c is in strong saturation region.

- $I_{C}=q A D_{B} \frac{d P_{B}(x)}{d x}$ have to be zero. So, $P_{B}(x)$ is constant.

4)

a) From eq. 10.3

$$
W=W_{B}-X_{P E B}-X_{P C B}
$$

where, $N_{D E}=10^{18} \mathrm{~cm}^{-3}, N_{A B}=10^{16} \mathrm{~cm}^{-3}, N_{D C}=10^{15} \mathrm{~cm}^{-3}$.

$$
\left.\begin{array}{rl}
& W_{B}=1.0 \times 10^{-4} \mathrm{~cm} \\
& \left(E_{F}-E_{i}\right)_{E}=K T \ln \frac{N_{D E}}{n_{i}}=0.477 \mathrm{eV} \\
& \left(E_{F}-E_{i}\right) B=-K T \ln \frac{N_{A B}}{n_{i}}=-0.358 \mathrm{eV} \\
& \left(E F-E_{i}\right)_{C}=K T \ln \frac{N_{D C}}{n_{i}}=0.298 \mathrm{eV}
\end{array}\right) \Rightarrow V_{b i E B}=0.835 \mathrm{~V}
$$

b) Since $e^{q V_{E B} / K T} \geqslant 1$ and $e^{q V_{C B} / k T} \ll 1$, we can write the following: (NPN)

$$
\begin{aligned}
I_{E n} & =q n_{i}^{2} \cdot A \cdot \frac{D_{B}}{W N_{B}} \cdot e^{q V E B / K T} \\
I_{E B} & =q n_{i}^{2} A \cdot \frac{D_{E}}{L E N_{E}} \cdot e^{q V_{E B / K T}} \\
I_{C A} & =\xi_{i}^{2} A \cdot\left(\frac{D B}{W N_{B}}-\frac{W}{2 Z_{B} \cdot N_{B}}\right) \cdot e^{q V E B / K T} \\
I_{C P} & =q n_{i}^{2} A \cdot\left(\frac{D_{C}}{L C N_{C}}\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
& D_{B}=0.026 \times 1248=32.45 \\
& D_{E}=0.026 \times 115=2.99 \\
& D C=0.026 \times 458=11.91 \\
& L E=\sqrt{D E Z_{E}}=1.7 \times 10^{-3} \mathrm{~cm}, 0.550 \times 2 . \\
& L_{C}=\sqrt{D_{C} \tau_{C}}=3.45 \times 10^{-3} \mathrm{~cm} \\
& A=0.01 \mathrm{~cm}^{2} \\
& W=1 \times \mathrm{cm}^{-48}-2.55 \times 10^{-5}-2.44 \times 10^{-5}=5.01 \times 10^{-5} \mathrm{~cm} .
\end{aligned}
$$

$$
\begin{aligned}
\therefore I_{E n} & =2.3298 \times 10^{-3}(\mathrm{~A}) \\
I_{E p} & =6.32 \times 10^{-8}(\mathrm{~A}) \\
I_{C D} & =2.3296 \times 10^{-3}(\mathrm{~A}) \\
I_{C P} & =5.52 \times 10^{-11}(\mathrm{~A})
\end{aligned}
$$

C) Including Bare recombination, $I_{B}=I_{B i d e a l}+I_{B r e c o m b}$.

$$
\begin{aligned}
= & q n_{i}^{2} A\left(\frac{D E}{L_{E N E}}+\frac{w}{2 \tau_{B}} \cdot \frac{1}{N_{B}}\right)\left(e^{q V_{E B / K T}}-1\right) \\
& +q n_{i}^{2} A\left(\frac{D_{C}}{L_{C} N_{C}}+\frac{w}{2 \tau_{B} N_{B}}\right)\left(e^{g V_{E B / K T}}-1\right) \\
I_{C}= & I_{\text {cideal }}-I_{B \text { recomb } b} \simeq I_{c i d e a l} . \\
I_{E}= & I_{\text {Eideal }} .
\end{aligned}
$$

$$
\gamma \text { (emitter injection efficiency) }=\frac{I_{E M}}{I_{E p}+I_{E n}}=0.99997
$$

$$
\alpha_{T} \text { (base transport factor) }=\frac{I_{C P L}}{I_{E R L}}=0.99991
$$

$$
\alpha_{d c}=\gamma \cdot \alpha_{T}=0.99988
$$

$$
\beta d c=\frac{\alpha d c}{1-\alpha_{d c}}=8.33 \times 10^{3}
$$

d) for reducing the length of emitter to $0.3, \mu \mathrm{~m}$, IEP is same, but
$I_{E n}$ is increase because.

$$
I_{\epsilon n}=g m_{i}^{2} A \cdot \frac{D E}{L E N \epsilon} e^{g V \in g / L T}, \quad W_{E} \ll L \varepsilon \text {, so }
$$

LE have to be replaced by $W E$.
So,

$$
I_{E n} \uparrow \Rightarrow \gamma \downarrow \Rightarrow \beta \downarrow .
$$

It would urerease In and decrease β.
5)
a)

$$
\begin{aligned}
I_{C}= & q n_{i}^{2} A\left(\frac{D_{B}}{W N_{B}}\right)\left(e^{q V_{E B} / k T}-1\right) \\
& -q n_{i}^{2} A\left(\frac{D_{C}}{L_{C} N_{C}}+\frac{D_{B}}{W N_{B}}\right)\left(e^{q V_{C B}}-1\right)
\end{aligned}
$$

where $e^{q V_{E B}} \gg 1, e^{q V_{C B}}<1$

$$
\simeq q n_{i}^{2} A \cdot \frac{D_{B}}{W \cdot N_{B}} \cdot e^{q \cdot V \in B / k T}
$$

where, $D_{B}=0.026 \times 378=9.83 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
\therefore when $V \in B=0.5 \mathrm{~V}$,

$$
I_{c}=2.3 \times 10^{-2}(\mathrm{~A})
$$

When $V_{E B}=0.8 \mathrm{~V}$,

$$
I_{c}=2.2 \times 10^{3} \quad(\mathrm{~A})
$$

b) $I_{B}=q n_{B}^{2} A\left(\frac{D_{E}}{L_{E} N E}+\frac{w}{2 \tau_{B}} \cdot \frac{1}{N_{B}}\right) \cdot e^{T V E B / K T}$ for active region,.,

Where $A=1 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& D_{E}=0,026 \times 300=7.8 \\
& L_{E}=\sqrt{D_{E} \tau_{E}}=0.88 \times 10^{-3} \mathrm{~cm} . \\
& \tau_{B}=5 \times 10^{-7} \\
& W=0.32 \times 10^{-4} \mathrm{~cm} . \\
& N_{B}=5 \times 10^{16} \mathrm{~cm}^{-3} \\
& N_{E}=8 \times 10^{17} \mathrm{~mm}^{-3}
\end{aligned}
$$

\therefore when $V_{\in B}=0.5 \mathrm{~V}, \quad I_{B}=4.22 \times 10^{-7}(\mathrm{~A})$
when $V_{E E}=0.8 \mathrm{~V}, I_{B}=4.32 \times 10^{-2}(\mathrm{~A})$
c) From eq. 11.49,

$$
I_{c} \simeq q n_{i}^{2} A \frac{D_{B}}{W \cdot N_{B}} e^{q V E E / K T}
$$

Where $D_{B}=9.83$.
$V_{E B}=-0,8^{\circ}$
$N_{B}=5 \times 10^{16}$

$$
w=0,6 \times 10^{-4}-x_{n E B}-x_{n C B}
$$

$$
=0.6 \times 10^{-4}-\left(\frac{2 K_{S} \epsilon_{0}}{2 \cdot N_{D B}} \cdot \frac{N_{A E}}{N_{A E}+N_{D B}} \cdot V_{b \dot{ }} E B\right)^{1 / 2}-\left(\frac{2 K_{S} \cdot \epsilon_{0}}{q \cdot N_{D B}} \cdot \frac{N_{A C}}{N_{A C}+N_{D B}}\left(V_{b, C B}-V_{C B}\right)\right)^{1 / 2}
$$

$$
=0.56 \times 10^{-4}-1.6 \times 10^{-5} \times\left(0.76-V_{C B}\right)^{1 / 2}
$$

where $V_{C B}=V_{E B}-V_{E C}=0,8-V_{E C}$

$$
I_{c}=16 \times \frac{9.83}{5 \times 10^{16}} \times e^{30,77} \times \frac{1}{0.56 \times 10^{-4}-1.6 \times 10^{-5} \times\left(-0.04+V_{E C}\right)^{1 / 2}}
$$

\therefore Early Voltage $\simeq-3.8 \mathrm{~V}$
d)

$$
\begin{aligned}
& W= W_{B}-X_{n E B}-X_{n C B} \\
&= 0.6 \times 10^{-4}-\left[\frac{2 K_{s} \epsilon_{0}}{q} \cdot \frac{N_{E}}{N_{B}\left(N_{G}+N_{B}\right)} \cdot\left(V_{b ; \in B}-V_{E B}\right)\right]^{1 / 2} \\
&-\left[\frac{2 K_{S} \epsilon_{0}}{q} \frac{N_{C}}{N_{B}\left(N_{C}+N_{B}\right)} \cdot\left(V_{b j C B}-V_{C B}\right)\right]^{1 / 2} \\
& \text { where } V_{b i E B}=0.026 \ln \frac{N_{E} N_{B}}{n_{j}^{2}}=0.874 \\
& V_{b ; C B}=0.026 \ln \frac{N_{C} N_{B}}{m^{2}}=0.76 \\
& V_{E B}=0.5 \mathrm{~V} \\
& W= 0.6 \times 10^{-4}-0.96 \times 10^{-5}-\left[0.43 \times 10^{-10}\left(0.76-V_{C B}\right)\right]^{1 / 2}
\end{aligned}
$$

the condition for punch through is $\omega=0,50$,

$$
\begin{aligned}
& 0=5.04 \times 10^{-5}-0.65 \times 10^{-5} \sqrt{0.76-V C B} \\
& \left.\therefore \quad V_{C B}=-59.36 \mathrm{CV}\right)
\end{aligned}
$$

Problem 1, midterm exam \#2, spring 2007
(6.) a.) Forward Active Bias
n
ρ

Emitter $N_{d}=10^{\prime \prime}$ or 10^{16}

$$
\begin{aligned}
E_{c}-E_{f}=-4 T \ln \frac{N_{d}}{N_{c}} & =, 21 e \mathrm{~V} \text { for } N d=10^{16} \\
& =, 15 \mathrm{eV} " N d=10^{17}
\end{aligned}
$$

Base $\mathrm{Na}=10^{15} \mathrm{~cm}^{-3}$

$$
E_{V}-E_{\rho}=-H T \ln \frac{10}{L_{V}}=.24 e V
$$

calloctir

$$
\begin{aligned}
& N_{d}=10^{44} \\
& E_{c}-E_{f}
\end{aligned}=-k T \ln \frac{N_{d}}{N_{c}}=.33 \mathrm{VV}
$$

b) $I_{x} \Leftrightarrow I_{E}$ for non

$$
I_{z} \Leftrightarrow I_{c}
$$

This is forwent active so we can DSsume $e^{-g V / k T} \gg 1>e^{q V / h T}$

$$
\begin{aligned}
& \begin{aligned}
I_{E}=I_{x} & =q n_{i}^{2} A\left(\frac{D_{E}}{2 W_{E} N_{E_{1}}}+\frac{D_{E}}{2 W_{E_{2}} N_{E 2}}+\frac{D_{B}}{W_{B} N_{B}}\right) \\
2 \mathrm{mn}^{2} & \times e^{-2 V_{x / R T}}
\end{aligned} \\
& I_{c}=q n_{i}^{2} A\left[\left(\frac{D_{B}}{W_{B} N_{B}}\right)-\left(\frac{W_{0}}{2 I_{B}} N_{B}\right)\right] e^{-q \frac{V}{2} / T T} \\
& N_{B}=10_{i m}^{1 \sigma_{m}^{-3}} A=2 \mathrm{~mm}^{2} \\
& W_{B}=3_{\mu m}-x_{P E}-x_{p c} \\
& =3 \mu m-\sqrt{\frac{\alpha E}{g}\left(V_{V_{E}}-, 5\right) \frac{N_{d}}{N_{a}} \frac{1}{\left(V_{0}+V_{l}\right)}} \\
& -\sqrt{\frac{2 \epsilon}{q}\left(V_{r_{c}}+5 r\right) \frac{N}{19} \frac{1}{(1 /+1 / 2)}}
\end{aligned}
$$

$$
\begin{aligned}
& W_{B}=3 \mu \mathrm{~m}-.5 \mu \mathrm{~m}-.81 \mu \mathrm{~m} \\
& W_{B} \approx 1,7 \mu m
\end{aligned}
$$

C.)

$$
\gamma=\frac{\frac{D_{B}}{W_{B} N_{B}}}{\frac{D_{F_{1}}}{2 W_{E_{1}} N_{E}}+\frac{D_{E_{2}}}{2 W_{E_{2}} N_{E_{2}}}+\frac{D_{B}}{W_{B} N_{B}}}
$$

$$
\frac{D_{B}}{W_{B} N_{B}} \approx 2.1 \times 10^{-10}
$$

$$
W_{E_{1}} \sim W_{E_{2}} \sim 3 \mu m
$$

(Note that widest $X_{n E}<05 \mathrm{~mm}$)

$$
\begin{aligned}
&\left(<2 \% \text { of } W_{E}\right) \\
& D_{E_{1}}\left.=\frac{\pi}{q} \mu_{p}\left(10^{17}\right)=(.206) / 331\right)=8.6 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \\
& D_{E_{2}}=\frac{4 T}{q} \mu_{p}\left(10^{16}\right)=(.026)(437)=11.4 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \\
& \frac{D_{E_{1}}}{2 W_{E_{1}} N_{E_{1}}}=1.4 \times 10^{-13} \quad \frac{D_{E_{2}}}{2 W_{E_{2}} E_{E}}=1.9 \times 10^{-12}
\end{aligned}
$$

$$
\begin{aligned}
& D_{B}=\frac{k T}{q} \mu_{B}\left(10^{15}\right)=(.026)(1345) \\
& D_{3}=35 \frac{\mathrm{~cm}^{2}}{5}
\end{aligned}
$$

$$
\begin{aligned}
& I_{z} \approx 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=, 99 \\
& \alpha_{T}=1-\frac{W_{B}^{2}}{2 L_{B}^{2}} \quad L_{B}=\sqrt{D_{B} T_{B}} \\
& =\sqrt{35 \frac{\mathrm{ma}^{2}}{\mathrm{~s}}\left(1 \times 1 \times 0^{-5}\right)} \\
& L_{B} \approx 19 \mu \mathrm{~m} \\
& \alpha_{T}=1-\frac{1}{2}\left(\frac{1}{19}\right)^{2} \\
& \alpha_{T}=.996 \\
& \beta=\frac{\gamma_{\alpha T}}{1-\gamma_{\alpha}} \quad \beta \approx 71
\end{aligned}
$$

d.)

$$
\begin{aligned}
& I_{c c}=I_{z}=18 \mathrm{~mA} \\
& I_{B B}=\frac{18 \mathrm{~mA}}{20} I_{B C}=, 9 \mathrm{~mA} \\
& \tau_{r}=\tau_{B} \ln \left[\frac{1}{1-\left(\frac{18}{19} \frac{1}{71}\right)}\right] \\
& \tau_{r}=1 \operatorname{lps}(.33) \\
& \underbrace{\tau_{0} ⿸_{t}=\beta} \\
& \tau_{r}=33 \mathrm{~ns} \\
& \text { could also use } \\
& \tau_{t}=\frac{W^{2}}{2 D_{0}}
\end{aligned}
$$

e.)

$$
\begin{aligned}
& I_{c}=\frac{M \alpha d c}{1-M \alpha_{d c}} I_{B} \\
& \text { Now } \frac{\alpha_{d c}}{1-\alpha_{d c}}=71
\end{aligned}
$$

\therefore Let "significant" man 10% (Other reasonable values oke)

$$
\begin{gathered}
\text { Find } \begin{array}{c}
\frac{M \alpha_{c}}{1-M d_{c}} \approx 78 \quad \alpha d c=.986 \\
\left(M \alpha_{c}\right)=78-78 M d_{c} \\
19 M \alpha_{d c}=78 \\
M \alpha_{d c}=\frac{78}{19} \\
M=1.001 \\
M=\frac{1}{1-\left(\frac{V_{c E q}}{V_{c B O}}\right)^{m}} \quad \text { let } m=6 \\
V_{C B O}=\frac{E}{2 q} \frac{N_{a}+\| l l}{N_{a l}} \varepsilon_{c r}^{2} \\
V_{C O Q}=5700 \mathrm{~V}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& 1-\left(\frac{V_{C E}}{V_{C B O}}\right)^{6}=\frac{1}{M} \\
& 1-\frac{1}{M}=\left(\frac{V_{C E}}{V_{C B O}}\right)^{6} \\
& V_{C E}=V_{C B O}\left(1-\frac{1}{M}\right)^{1 / 6}=5700\left(1-\frac{1}{1.001}\right)^{1 / 6} \\
& V_{C E} \sim V_{z} \sim 1800 \mathrm{~V}
\end{aligned}
$$

Not a significant contribution to base current until this value is reached ($\sim 1800 \mathrm{~V}$) but significant blond that.

