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Abstract

The capacity of large hybrid wireless networks is considered in this project.
The hybrid network is based on an ad-hoc network with an embedded wired in-
frastructure. Both types of wireless transmissions are allowed in hybrid networks:
peer-to-peer and through infrastructure. The report focuses on the case when the
number of base stations in the hybrid network grows sub-linearly with the network
size. Previous results suggest that there exists a protocol that provides an im-
provement in capacity as compared to a pure ad-hoc network if the infrastructure
growth is at least as fast as square root of the size of the network. In this work,
we consider this problem from Information Theory point of view and derive the
similar result for a general hybrid network without specifying any protocol.

Key Words: Hybrid Wireless Networks, Multiuser Information Theory, Random Ma-
trix Theory.

1 Introduction

The success in the development of wireless communications in late 90s has resulted in the
installation of commercial cellular networks. The ease of use and importance of mobility
has led to the exploded use of cell phones. In many cases such systems are limited in



Figure 1: Hybrid network allows both type of communications: peer-to-peer and through-infrastructure.

the number of mobile users they can simultaneously handle. Market competition drives
the costs lower which results in the increased number of users willing to pay for the
wireless service. Unfortunately, bandwidth constraints and stringent FCC regulations
on the irradiated power limit the capacity of such systems. Being limited in wireless
resources, the only way to survive in the market is to offer the highest possible efficiency
of resource utilization which directly translates into the efficient use of system capacity.

While cellular wireless systems are easily scalable they still have a number of unsolved
problems. For example, one of them is related to the mobility management that assigns
a mobile user to the certain “home” location. If both users assigned to home place A
happen to be at place B their calls to each other will be routed through location A mo-
bile switching center [1]. This incurs a substantial delay sometimes reaching the order of
minutes which is clearly an unacceptable Quality-of-Service(QoS). It seems reasonable to
allow those users to have a direct connection call if they are located close enough to each
other. Thus, we naturally arrive at the idea of allowing an ad-hoc type of connections
in a backbone based network. In fact, with the development of Personal Wireless Area
Networks and cognitive radio technology, the importance of a hybrid network structure
is going to increase significantly. In addition to that, there is an ongoing FCC discussions
to abolish the stringent frequency band regulations by introducing a more flexible system
based on user access priorities. This change will allow customers and service providers to
compete for the wireless resources and negotiate the terms of frequency use locally. Such
a shift in FCC mentality seems to indicate that the era of hybrid networks is inevitable.
On the other hand, the other extreme of not using an infrastructure results in a substan-
tial loss of system capacity. Recently, it has been shown [2] that the capacity per user of
wireless ad-hoc network goes to 0 as the size of the network goes to infinity. In practice,
network scalability is an essential requirement for a business model of any wireless service
provider. Therefore, practical feasibility of network deployment demands a constant rate
O(1) allocated for each user. A couple of different approaches were suggested to over-
come the deterioration of per-user capacity of an ad-hoc network. Among the brightest
thoughts we can point out the use of mobility [3] to provide asymptotically O(1) rate for
each user. Unfortunately, this approach leads to higher transmission delays. In fact, the
capacity and delay for such a network reveal an interesting tradeoff [4].



The hybrid network enjoys advantages of both types of networks: it offers local flex-
ibility of ad-hoc networks with efficient long-distance routing strategies of wired infras-
tructure, see Fig. 1. In this paper we focus on capacity scaling laws of hybrid networks
and the relative size of infrastructure.

Instead of specifying a certain connection protocol, we want to look at the network
capacity from Information Theory point of view. Such a general benchmark allows en-
gineers to estimate how much of the capacity they sacrifice by making specific design
decisions. The matter is complicated by the fact that the current development of In-
formation Theory can not provide capacity regions of some single user channels, for
example, non-degraded broadcast channels (BC), relay channels (RC) etc. Network ca-
pacity is intrinsically more complicated and contains RC, BC, multiple access channel
(MAC) capacity regions as special cases. Therefore, we do not hope to obtain the full
characterization of the capacity region for such a general model as a hybrid network.
Instead, we are going to focus on the asymptotic behavior as the network size grows to
infinity.

The organization of this paper is as follows: in Section 2 we formally define the
hybrid network, channel model and discuss our assumptions. Section 3 will state the
main result of this work. Section 4 will be devoted to proving the result we claim in
Section 3. Section 5 will summarize the key ideas and References will conclude the
paper.

In this paper we will often use terms (network) capacity and per-user (network) ca-
pacity. The term capacity will refer to the total network capacity, maximum sum-rate of
all users, unless stated explicitly that we are talking about per-user capacity.

Throughout the paper we will use the following asymptotic notations:

• For any two functions f(x) and g(x) we write f(x) = o(g(x)) to imply that

lim
x→∞

f(x)

g(x)
= 0.

• We write f(x) = O(g(x)) to imply that

lim
x→∞

f(x)

g(x)
< ∞ and lim

x→∞
f(x)

g(x)
< ∞.

2 Hybrid Networks

Consider a network of n mobile users who are randomly and uniformly distributed with
a constant density over area A as the network size increases. Thus, total network area A
is proportional to the number of users n. The randomness serves as an important tool
in our analysis, since the capacity of a random network is much easier to analyze than
a predefined network setup without any symmetry in it. Suppose, that we randomly
and uniformly select m locations in such a network for base stations. The base stations
are connected by a wired backbone with bandwidth significantly greater than that of
wireless links. For theoretical tractability of further analysis we will assume that base
stations are connected by wired infrastructure with infinite bandwidth, thus, allowing
base stations to cooperate in signal reception. Each user in the network has a handset
with limited power P and one antenna. Each base station is also modelled to have one
antenna, although our analysis can be extended to the case of any number of antennas



at a base station in a straightforward manner. The purpose of base stations is to relay
the transmitted messages of network users, so base stations do not generate or absorb
any traffic. For the purpose of generality we do not impose any cellular structure on
the network architecture. We consider the large scale path loss model for the wireless
channel (without shadowing and multi-path fading for simplicity):

h(r) =
1

rα
, r > r0, (1)

where α is the path loss coefficient which in practice is typically between 1.6(line-of-
sight resonance, indoor) and 6(no line-of-sight, blocked by walls, indoor), and r0 is the
minimum distance between users. Since we maintain the constant user density in the
network, the probability of two users to be within distance r0 of each other vanishes
when the size of the network grows to infinity. Thus, we assume that we can neglect these
events. In practice, there is a distance (lower bounded by half of the wavelength, typically
several wavelengths) that is necessary to avoid induced currents in transmitter/receiver
circuitry. For theoretic analysis we will also assume that α > 2 which is a very common
scenario for outdoor wireless channels.

3 Main Result

We are interested in the influence of the wired backbone on the overall capacity of the
hybrid network. It is clear that when number of base stations m grows proportional to
the network size n then the capacity will be dominated by the capacity of the uplink con-
nection to the infrastructure. We consider the case when the number of base stations m
grows sub-linearly with n. From a practical perspective we ask if we can increase the
capacity of a hybrid network with less than linear growth in the number of base stations?

Claim 1. The infrastructure dominates the capacity of a hybrid network if

m = O (
nβ

)
,

where

β > max

{
1

2
+

1

2α
,
α− 1

α + 1
+

1

2α

}
, with α > 2.

The behavior of the power exponent is shown in Fig. 2. This is the sufficient condition
but not necessary. We notice that β → 1 as α → ∞. This result can be intuitively
understood because the average distance between nodes is a constant (proportional to
density) whereas the average distance to a base station increases if m = o(n). Therefore,
asymptotically with α → ∞ the signals can not reach wired infrastructure while the
ad-hoc transmissions are not affected as much as the uplink connections.

4 Proof of main result.

Suppose that at the specific time moment γ fraction of users wants to communicate
directly in the ad-hoc multi-hop fashion and (1 − γ) fraction of users prefers to use
infrastructure. We split the transmission interval into 2 halves - the first half for all ad-
hoc transmissions and the second half for uplink connections to the wired infrastructure,
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Figure 2: Base station growth exponent for the curves m = nβ .

so the total network capacity can be represented as:

Cnet = γCad−hoc + (1− γ)Cuplink.

By doing that we lose at most half of capacity for both type of transmission. Since,
eventually we are concerned with the asymptotic behavior of the network capacity the loss
of one half is not going to affect the final result. On the other hand, such a transmission
scheme allows us to avoid interference between the ad-hoc and uplink transmissions.
Note that we do not get rid of interference among users within each half, it is only the
mixed-connection interference that we want to avoid. Thus, asymptotically as n,m →∞
we can write

Cnet = O(Cad−hoc + Cuplink). (2)

Based on the adopted channel model let us look at the two modes of communications
available to users in a hybrid wireless network.

Ad-hoc mode.
Ad-hoc network capacity was first considered in [2] where the authors argued that

the capacity of such a network grows sub-linear with rate O(
√

n). Later, O. Leveque and
E. Telatar has proven this pessimistic result from Information Theory point of view by
providing an upper bound on the ad-hoc network capacity [5]:

C(n) ≤ O(
√

n n1/(2α) log n).

A cellular TDMA scheme provides an achievable sum-rate for an ad-hoc network:

C(n) ≥ O(
√

n (log n)−1/2−α).



Infrastructure mode.
Due to infinite bandwidth of the wired backbone (in practice, several orders bigger

than bandwidth of wireless links) we can assume perfect cooperation among base stations.
From that perspective, the whole wired infrastructure can be viewed as a multi-antenna
receiver. Therefore, the uplink connection of n users to the infrastructure has a natural
description of a vector Multiple Access Channel with n independent users and one receiver
with m antennas. In the same light, the downlink connection can be represented by a
Broadcast Channel with m transmit antennas and n target users. In this work we will
focus on the uplink capacity, the downlink can be analyzed in the similar way. Let
xi, i = 1, . . . , n denote the transmitted signal of the i-th user and yk, k = 1, . . . , m denote
the signal received by k-th base station. Then the uplink channel can be modelled as

y =
n∑

i=1

hixi + v,

where hi is a vector of channel coefficients from i-th user to all base stations, and vk is
AWGN, zero mean, unit variance noise at the k-th base station. The transmitted signals
must satisfy the power constraint E{x2

i } ≤ P for every user i = 1, . . . , n. The capacity
region of the vector MAC is given by:

Cmac =
⋃

0≤Pi≤P

{
(R1, . . . , Rn) :

∑
i∈S

Ri ≤ 1

2
log det

(
I +

∑
i∈S

Pihih
T
i

)
, ∀S ⊆ {1, . . . , n}

}
.

Since we are interested in the total network capacity we are going to focus on sum-rate
capacity only:

Cmac,sum−rate = max
0≤Pi≤P

1

2
log det

(
I +

n∑
i=1

Pihih
T
i

)
.

Stack vectors hi as columns into matrix H:

H = [h1 h2 . . . hn] ∈ Rm×n.

Then, sum-rate capacity of the network uplink can be represented in the form:

Cmac,sum−rate = max
0≤Pi≤P

1

2
log det

(
I + HPHT

)
,

where P is the diagonal matrix with Pi on the diagonal. We assume that users do not
have information about the channel state of the other users, therefore everyone uses as
much power as possible to maximize their own transmission rate. With this assumption
we arrive at the final form of sum-rate capacity:

Cmac,sum−rate =
1

2
log det

(
I + PHHT

)
. (3)

Note, that each entry Hki of matrix H is function (1) of the distance from user i to base
station k. Hence, the sum-rate capacity Cmac,sum−rate is a complicated function of user
and base station locations. Instead of evaluating this function for all possible locations
we consider a different approach. We will calculate the sum-rate capacity for a random



network asymptotically as both n, m → ∞. That is, we treat user locations and base
station locations as random variables. In practice, it is justified because the locations of
mobile users are random and what matters for our model is the distance between users
and base stations. As the size of network grows the typical random distances to base
stations will be viewed by a user as the same random variables as if base stations were
randomly placed over the area of interest. The magic here comes from Random Ma-
trix Theory that suggests that asymptotically the distribution of eigenvalues of properly
normalized matrix HHT converges to a deterministic distribution. This deterministic
limit does not depend on the distribution of entries as long as a couple of conditions are
satisfied.

Random Matrix Theory results.
To deal with the expression in (3) we will need several results from Random Matrix

Theory:

1. If the entries of matrix G ∈ Ra×b are i.i.d., zero mean, with variance 1/a and
fourth moments of order O(1/a2) the empirical distribution of eigenvalues of GTG
converges almost surely, as a, b → ∞ with b/a → β, so the so-called Marcenko-
Pastur law whose density function is given by [6]-(page 9):

fβ(x) =

(
1− 1

β

)+

δ(x) +

√
(x− a)+(b− x)+

2βπx
, (4)

where (z)+ = max(0, z) and a = (1−√β)2, b = (1 +
√

β)2.

2. Zero mean condition can be relaxed to having identical mean [6]-(page 54).

Now, we are going to apply the results from Random Matrix Theory to the sum-rate
capacity obtained in (3). We are going to focus on the case when m = o(n).

Sub-linear growth of base stations.
Since the network coverage area growth is proportional to O(n), the average area per

base station grows as O(n/m). Hence, the average distance to the base station from a
randomly placed user grows as O(

√
n/m). First, we have to eliminate the dependence

of the expected value of Hik ∼ r−α on n and m. We introduce

H̃ =
( n

m

)α/2

H.

To ensure that the variance decreases as O(1/n) (required to apply the results of Random
Matrix Theory) we introduce the scaling factor 1/

√
n:

F =
1√
n

H̃ =
1√
n

( n

m

)α/2

H. (5)

It is also worth pointing out that as long as α > 2 all moments of random variable (1)
are finite because we have a minimum distance r > r0 constraint. This is the place where
we need to use this minimum distance constraint. Substituting the properly normalized
channel matrix (5) into the expression for sum-rate capacity (3) we obtain:

Cmac,sum−rate =
1

2
log det

(
I + P n

(m

n

)α

FFT
)

=
1

2

m∑
i=1

log
(
1 + P n

(m

n

)α

λi(FFT )
)

,
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Figure 3: Power exponents for the curves m = nβ .

where λi(FFT ) is the i-th eigenvalue of matrix FFT ∈ Rm×m. Now, we can calculate the
asymptotic of Cmac,sum−rate. Taking into account that m = o(n) (for similar derivations
see [6]):

Cmac,sum−rate =
m

2

1

m

m∑
i=1

log
(
1 + P n

(m

n

)α

λi(FFT )
)

→ m

2
Efβ(λ)

{
log

(
1 + P n

(m

n

)α

λ(FFT )
)}

→ m

2

∫ ∞

0

log
(
1 + P n

(m

n

)α

λ
)

fβ(λ)dλ,

where fβ(λ) is the limit of the empirical distribution of eigenvalues of matrix FFT . Since
m/n → 0 we have β = 0, therefore, the distribution (4) goes to δ(λ− 1) as β → 0. (Note
that support [a, b] of distribution (4) shrinks to one point λ = 1.) Thus, we have

Cmac,sum−rate → m

2

∫ ∞

0

log
(
1 + P n

(m

n

)α

λ
)

δ(λ− 1)dλ

→ m

2
log

(
1 + P n

(m

n

)α)

Hence, we can point out three cases here:

• If mα/nα−1 → const then Cmac,sum−rate = O(m);

• If mα/nα−1 → 0 then Cmac,sum−rate = O (mα+1/nα−1);



• If mα/nα−1 →∞ then Cmac,sum−rate = O (m log (mα/nα−1)) = O(m log n).

To complete the proof of Claim 1 we consider two cases:

• Suppose that 2 < α ≤ 3 then we pick

m = O (
n1/2+1/(2α)+δ

)
, for arbitrary small δ > 0. (6)

For 2 < α ≤ 3 we notice that 1/2 + 1/(2α) ≥ (α− 1)/α (see Fig. 3), therefore, we
also have m > O (

n(1−α)/α
)
. For this asymptotic behavior of m we have derived

that the capacity of wired infrastructure is O(m log n). Hence, we use the upper
bound on the capacity of an ad-hoc network to claim the following bound:

Cmac,sum−rate

Cad−hoc

≥ O
(

m log n

n1/2+1/(2α) log n

)
= O

( m

n1/2+1/(2α)

)
→∞,

which implies that the capacity of infrastructure dominates the capacity of ad-hoc
communication.

• Now, suppose that α > 3 then we pick

m = O (
nβ

)
,

where

β =
α− 1

α + 1
+

1

2α
+ δ, for arbitrary small δ > 0.

For any value α > 3 arbitrary close to 3 there exists small δ > 0 (see Fig. 3) such
that

m = O
(
n

α−1
α+1

+ 1
2α

+δ
)

< O
(
n

α−1
α

)
.

Thus, as derived before the capacity of wired infrastructure has the following asymp-
totic for this case:

Cmac,sum−rate = O
(

mα+1

nα−1

)
.

Hence,

Cmac,sum−rate

Cad−hoc

≥ O
(

mα+1

nα−1

1

n1/2+1/(2α) log n

)
= O

(
nδ

log n

)
→∞,

which means the wired infrastructure capacity dominates.

From Fig. 3 we see that we can rewrite both cases in the form stated in Claim 1.

5 Future directions

• Prove (if possible) that the capacity per user of a hybrid network goes to 0 if
m = o(n). For m = O(n) the capacity scales as O(n log n) and, therefore, per user
capacity goes to infinity. Are there other scenarios when per-user capacity does not
go to 0?

• Consider the feedback from wired infrastructure to implement power control. Will
it affect the capacity?

• Add the capacity of downlink to complete the analysis based on vector broadcast
channel.
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