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Correspondence

MIMO Broadcast Channels With Finite-Rate Feedback

Nihar Jindal, Member, IEEE

Abstract—Multiple transmit antennas in a downlink channel can provide
tremendous capacity (i.e., multiplexing) gains, even when receivers have
only single antennas. However, receiver and transmitter channel state in-
formation is generally required. In this correspondence, a system where
each receiver has perfect channel knowledge, but the transmitter only re-
ceives quantized information regarding the channel instantiation is ana-
lyzed. The well-known zero-forcing transmission technique is considered,
and simple expressions for the throughput degradation due to finite-rate
feedback are derived. A key finding is that the feedback rate per mobile
must be increased linearly with the signal-to-noise ratio (SNR) (in decibels)
in order to achieve the full multiplexing gain. This is in sharp contrast to
point-to-point multiple-input multiple-output (MIMO) systems, in which it
is not necessary to increase the feedback rate as a function of the SNR.

Index Terms—Broadcast channel, finite rate feedback, multiple-input
multiple-output (MIMO) systems, multiplexing gain.

I. INTRODUCTION

In multiple-antenna broadcast (downlink) channels, capacity can be
tremendously increased by adding antennas at only the access point
(AP) [1], [2]. In essence, an AP equipped withM antennas can support
downlink rates up to a factor of M times larger than a single antenna
AP, even when each mobile device has only a single antenna.1 In order
to realize these benefits, however, the AP must do the following.

• Simultaneously transmit to multiple users over the same band-
width (orthogonal schemes such as time-division multiple access
(TDMA) or code-division multiple access (CDMA) are generally
highly suboptimal).

• Obtain accurate channel state information (CSI).
Practical transmission structures that allow for simultaneous transmis-
sion to multiple mobiles, such as downlink beamforming, do exist. The
requirement that the AP have accurate CSI, however, is far more dif-
ficult to meet, particularly in frequency-division duplexed (FDD) sys-
tems. Training can be used to obtain channel knowledge at each of the
mobile devices, but obtaining CSI at the AP generally requires feed-
back from each mobile. Such feedback channels do exist in current
systems (e.g., for power control), but the required rate of feedback is
clearly an important quantity for system designers.

In this correspondence, we consider the practically motivated
finite-rate feedback model, in which each mobile feeds back a finite
number of bits regarding its channel instantiation at the beginning
of each block. This model was first considered for point-to-point
multiple-input multiple-output (MIMO) channels in [3]–[5], where
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1In fact, this is true on the uplink as well, by the multiple-access/broadcast
channel duality [2].

the transmitter uses such feedback to more accurately direct its
transmitted energy towards the receiver, and even a small number of
bits per antenna can be quite beneficial [6]. In point-to-point MIMO
channels, the level of CSI available at the transmitter only affects
the signal-to-noise ratio (SNR) offset; it does not affect the slope of
the capacity versus SNR curve, i.e., the multiplexing gain. However,
the level of CSI available to the transmitter critically affects the
multiplexing gain of the MIMO downlink channel [1]. As a result,
channel feedback is considerably more important for MIMO downlink
channels than for point-to-point channels.

In contrast to most recent work on the MIMO downlink channel
which has primarily concentrated on channels with a very large number
of mobiles [7]–[9], we consider systems in which the number of mo-
biles is equal to the number of transmit antennas. This regime is appli-
cable for inherently smaller systems as well as large systems in which
stringent delay constraints do not allow user selection to be performed
on the basis of channel qualities, e.g., users are selected for trans-
mission based upon queue lengths instead of on channel conditions.
Random beamforming is an alternative limited feedback strategy for
MIMO downlink channels in which each mobile feeds back a very low
rate quantization of the channel (log

2
M bits, whereM is the number

of transmit antennas) as well as an analog SNR value [7]. While this
strategy performs well when there are a large number of mobiles rela-
tive to the number of transmit antennas, it performs poorly in the small
system regime that we consider.

In this work, we propose a simple downlink transmission scheme that
uses zero-forcing precoding in conjunction with finite-rate feedback.
At the beginning of each block, each mobile quantizes its channel re-
alization toB bits. The AP receivesB feedback bits from each mobile
and uses zero-forcing precoding based on the channel quantizations.
The throughput of such a system is analyzed under the assumption that
random quantization codebooks are used by each mobile, i.e., random
vector quantization (RVQ) [10], [11] is performed, and that the channel
evolves according to an independent and identically distributed (i.i.d.)
Rayleigh block-fading model. Our key findings are as follows:

• The throughput of a feedback-based zero-forcing system is
bounded if the SNR is taken to infinity and the number of feed-
back bits per mobile is kept fixed.

• The number of feedback bits per mobile (B) must be increased
linearly with the SNR (in decibels) at the rate

B =(M � 1) log
2
P

�

M � 1

3
PdB

in order to achieve the full multiplexing gain of M . In addition,
this scaling of B guarantees that the throughput loss relative to
perfect CSIT-based zero-forcing is upper-bounded byM bits per
second per hertz (bps/Hz), which corresponds to a 3-dB power
offset.

• Scaling the number of feedback bits according to B = � log
2
P

for any � < M � 1 results in a strictly inferior multiplexing gain
of M( �

M�1
).

In essence, the channel estimation error at the AP must scale as the in-
verse of the SNR in order to achieve the full multiplexing gain if the
proposed zero-forcing-based architecture is used, which results in the
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required linear scaling of feedback. As a result of this scaling, the re-
quired feedback load is quite high in systems operating at even mod-
erate SNR levels. However, it may be feasible to support such loads
if the feedback channels experience the same SNR as the downlink
channel and high-rate transmission is used for feedback. While the
above conclusions are initially derived for RVQ, it is also shown that the
fundamental results on the bounded throughput of a fixed feedback-rate
system and on the required scaling of feedback rate in proportion to
SNR are not limited to RVQ-based systems but also apply to any quan-
tization codebook design.

The MIMO downlink finite-rate feedback model was also consid-
ered independently by Ding, Love, and Zoltowski [12], and MIMO
downlink channels with unquantized (analog) feedback are studied by
Samardzija and Mandayam in [13].

The remainder of this correspondence is organized as follows. In
Section II, we describe the channel model and the finite-rate feedback
mechanism. In Section III, we provide background material on MIMO
downlink capacity, linear precoding, and random vector quantization.
In Section IV, we describe the proposed zero-forcing-based system,
and analyze the throughput of this system (assuming RVQ is used) in
Section V. Section VI extends a number of results to arbitrary quantiza-
tion schemes. We provide numerical results comparing finite-rate feed-
back systems to alternative transmission techniques in Section VII, and
close by discussing conclusions and possible extensions of this work
in Section VIII.

II. SYSTEM MODEL

We consider a K receiver multiple-antenna broadcast channel in
which the transmitter (also referred to as the AP) has M > 1 antennas
and each receiver has a single antenna. The broadcast channel is math-
ematically described as

yi = hhhyixxx+ ni; i = 1; . . . ; K (1)

where hhh1; hhh2; . . . ; hhhK are the channel vectors (with hhhi 2 M�1) of
users 1 through K , the vector xxx 2 M�1 is the transmitted signal,
and n1; . . . ; nK are independent complex Gaussian noise terms with
unit variance. The input must satisfy a transmit power constraint of P ,
i.e., E[kxxxk2] � P . We denote the concatenation of the channels by
HHHy = [hhh1 hhh2 � � �hhhK ], i.e., HHH is K � M with the ith row equal to
the channel of the ith receiver (hhhyi ). In order to focus our efforts on the
impact of imperfect CSI, we consider a system where the number of
mobiles is equal to the number of transmit antennas, i.e., K = M .

The channel is assumed to be block fading, with independent fading
from block to block. The entries of the channel vectors are distributed
as i.i.d. unit variance complex Gaussians (Rayleigh fading). Further-
more, each of the receivers is assumed to have perfect and instanta-
neous knowledge of its own channel vector, i.e., hhhi. Notice it is not
required for mobiles to know the channel of other mobiles. Partial CSI
is acquired at the transmitter via a finite rate feedback channel from
each of the mobiles, as described below.

In the finite-rate feedback model shown in Fig. 1 each receiver quan-
tizes its channel toB bits and feeds back the bits perfectly and instanta-
neously to the AP, which is assumed to have no other knowledge of the
instantaneous state of the channel. The quantization is performed using
a vector quantization codebook that is known at the transmitter and the
receivers. Typically, each mobile uses a different codebook to prevent
multiple mobiles from quantizing their channel to the same quantiza-
tion vector. A quantization codebook C consists of 2B M -dimensional
unit norm vectors C fwww1; . . . ; www2

g, whereB is the number of feed-
back bits per mobile. Similar to point-to-point MIMO systems, each

Fig. 1. Finite-rate feedback system model.

receiver quantizes its channel to the quantization vector that is closest
to its channel vector, where closeness is measured in terms of the angle
between two vectors or, equivalently, the inner product [4], [5]. Thus,
user i computes quantization index Fi according to

Fi =arg max
j=1;...;2

jhhhyiwwwj j

=arg min
j=1;...;2

sin2 (6 (hhhi;wwwj)) (2)

and feeds this index back to the transmitter. Note that only the direc-
tion of the channel vector is quantized, and no information regarding
the channel magnitude is conveyed to the transmitter. Magnitude infor-
mation can be used to perform power and rate loading across multiple
channels, but this generally of secondary concern when the number of
mobiles is the same as the number of antennas.2

Clearly, the choice of vector quantization codebook significantly af-
fects the quality of the CSI provided to the AP. In this work, we pri-
marily focus on performance assuming RVQ, in which an ensemble of
quantization codebooks is considered. Details of RVQ are discussed in
Section III-C.

Notation

We use boldface to denote vectors and matrices andAAAy refers to the
conjugate transpose, or Hermitian, of AAA. The notation kxxxk refers the
Euclidean norm of the vectorxxx, and 6 (xxx; yyy) refers to the angle between
vectors xxx and yyy with the standard convention

j cos( 6 (xxx; yyy))j = jxxxyyyyj=(kxxxk � kyyyk):

III. BACKGROUND

A. Capacity Results for MIMO Broadcast Channels

In this section, we summarize relevant capacity results for the mul-
tiple-antenna broadcast channel. When perfect CSI is available at trans-
mitter and receivers, the capacity region of the channel is achieved by
dirty-paper coding [15], [1], [16]–[18], which is a technique that can be
used to pre-cancel multiuser interference at the transmitter [19]. In this
correspondence, we study the total system throughput, or the sum rate,
which we denote as Csum(HHH;P ). At high SNR, the sum rate capacity
of the MIMO broadcast channel (BC) can be approximated as [20]

Csum

TX=RX�CSI(HHH;P ) �M log (P ) + c (3)

where c is a constant depending on the channel realization HHH . The
key feature to notice is that capacity grows linearly as a function of

2If there are more users than antennas (i.e., K > M ) and user selection is
allowed, channel magnitude information can provide a significant benefit to the
user selection process [14].
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M . Though the K (total) receive antennas are distributed among K
receivers, the linear growth is the same as in anM -transmit,K-receive
antenna point-to-point MIMO system, i.e., both systems have the same
multiplexing gain.

If each of the mobiles suffers from fading according to the same dis-
tribution and the transmitter has no instantaneous CSI, the situation is
very different. In this scenario, the channels of all receivers are statis-
tically identical, and thus the channel is degraded, in any order. There-
fore, any codeword receiver 1 can decode can also be decoded by any
other receiver, which implies that a TDMA strategy is optimal [21, Sec.
VI], [22]. Thus, the sum capacity of this channel is equal to the capacity
of the point-to-point channel from the transmitter to any individual re-
ceiver

Csum

RX-CSI = Ehhh log 1 +
P

M
khhh1k

2 (4)

and, therefore, the multiplexing gain of this channel is only one. In
fact, the downlink channel achieves a multiplexing gain of only one for
any fading distribution in which the spatial direction of each channel
is isotropically distributed, independent of the channel norm [22]. This
includes a channel in which users have unequal average SNRs but each
suffers from spatially uncorrelated Rayleigh fading.

There clearly is a huge gap between the capacity of the MIMO down-
link channel with transmitter CSI (multiplexing gain ofM ) and without
transmitter CSI (multiplexing gain of 1). Thus, it is of interest to inves-
tigate the more practical assumption of partial CSI at the AP. If each
of the mobiles has perfect CSI and the AP has imperfect CSI of fixed
quality (e.g., Rician fading with a fixed variance that is independent
of the SNR), it has recently been shown that the multiplexing gain of
the sum capacity is strictly smaller than M [23]. 3 Somewhat comple-
mentary to this result, our work shows that the full multiplexing gain
of M can be achieved if the feedback rate (i.e., the quality of the CSI)
is increased as a function of SNR such that the estimation error goes to
zero as the inverse of SNR.

B. Linear Precoding

Though dirty-paper coding is capacity achieving for the MIMO
broadcast channel, the technique requires considerable complexity and
practical implementations are still being actively pursued [24]–[26].
As a result, simpler downlink transmission schemes are of obvious
interest. One such scheme is linear precoding, which is also referred
to as downlink beamforming, which incurs a rate/power loss relative
to dirty-paper coding but achieves the same multiplexing gain of
M . While there are certainly many other powerful MIMO downlink
transmission techniques, such as the nonlinear precoding technique
proposed in [27], linear precoding has been shown to perform ex-
tremely well in comparison to such schemes [28].

In order to implement this scheme, the transmitter multiplies the
symbol intended for each receiver by a beamforming vector and trans-
mits the sum of these vector signals. Let si denote the scalar symbol
intended for the ith receiver, and let vvvi denote the corresponding unit
norm beamforming vector. The transmitted signal is then given by
xxx = K

j=1
vvvjsj . The received signal at user i is therefore,

yi = hhhyixxx + ni =

K

j=1

hhhyivvvjsj + ni (5)

and the SINR at mobile i is

SINRi =
P

M
jhhhyivvvij

2

1 +
j 6=i

P

M
jhhhyivvvj j

2
(6)

3It is conjectured that the multiplexing gain in this scenario is in fact equal to
one, although this has yet to be shown.

under the assumption that each of the symbols has power P=M . If
the inputs s1; . . . ; sK are chosen i.i.d. complex Gaussian, rates up to
I(Si;YijHHH) = log

2
(1+SINRi) are achievable with standard single-

user detection (i.e., no interference cancellation is attempted). Note that
the capacity-achieving strategy is linear precoding with the addition of
a precoding step at the transmitter which leads to the elimination of
some of the multiuser interference terms in the signal-to-interference-
plus-noise ratio (SINR) expression.

The performance of linear precoding clearly depends on the choice
of beamforming vectors, but the problem of determining the sum
rate maximizing beamforming vectors is generally very difficult. One
simple choice of beamforming vectors are the zero-forcing vectors,
which are chosen such that no multiuser interference is experienced at
any of the receivers. This can be done by choosing the beamforming
vector of user i orthogonal to the channel vectors of all other users,
i.e., by choosing vvvi orthogonal to hhhj for all i 6= j. It is easily seen
that the zero-forcing beamforming vectors are simply the normalized
columns of the inverse of the concatenated channel matrix HHH . If such
beamforming vectors are used, the received signal at the ith mobile
reduces to

yi = hhhyixxx+ ni =

K

j=1

hhhyivvvjsj + ni = hhhyivvvisi + ni (7)

because hhhyivvvj = 0 for all j 6= i by construction. Since all interfer-
ence has been eliminated, the corresponding SNR is given as SNRi =
P

M
jhhhyivvvij

2. In fact, zero-forcing is optimal among all downlink beam-
forming strategies at asymptotically optimal at high SNR [20].

Since zero-forcing createsM independent and parallel channels, the
resulting multiplexing gain is equal to M , which is the same as for the
capacity-achieving DPC strategy. Zero-forcing does however, incur a
rate loss (or alternatively, a power loss) relative to capacity. At high
SNR, the power loss of zero forcing relative to dirty-paper coding con-
verges to

3 log
2
e

M

M�1

j=1

j

M � j
decibels

which is approximately equal to 3 log
2
M decibels [20]. Clearly, the

transmitter must have perfect channel knowledge in order to choose
the zero-forcing beamforming vectors. If there is any imperfection in
this knowledge, there inevitably will be some multiuser interference,
which leads to performance degradation.

C. Random Vector Quantization

In this work, we use RVQ, in which each of the 2B quantization
vectors is independently chosen from the isotropic distribution on the
M -dimensional unit sphere [10], [11]. We analyze performance aver-
aged over all such choices of random codebooks, in addition to av-
eraging over the fading distribution. Random codebooks are used be-
cause the optimal vector quantizer for this problem is not known in
general, and known bounds are rather loose. RVQ, on the other hand,
is very amenable to analysis and also performs measurably close to op-
timal quantization, as is shown in Section VI. Similar to the standard
random coding argument used for channel coding, there always ex-
ists at least one quantization codebook that performs at least as well
as the ensemble average. Note that each receiver is assumed to use
a different and independently generated quantization codebook; if a
common codebook were used, there would be a nonzero probability
that multiple users return the same quantization vector, which reduces
the number of spatial dimensions available.

RVQ was first used to analyze the performance of CDMA and
point-to-point MIMO channels with finite-rate feedback, and has
been shown to be asymptotically optimal in the large system limit
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(e.g., infinitely many antennas) [10], [11]. There has also been very
recent work characterizing the error performance of point-to-point
multiple-input, single-output (MISO) systems utilizing RVQ [29].

We now review some basic results on RVQ from [29] that will be
useful in later derivations. As stated earlier, the quantization vectors
are i.i.d. isotropic vectors on theM -dimensional unit sphere, as are the
channel directions ~hhhi

hhh

khhh k
due to the assumption of i.i.d. Rayleigh

fading. The most important quantity of interest is the statistical distri-
bution of the quantization error. In order to determine this, first consider
the inner product between a channel direction and an arbitrary quanti-
zation vector

www
y
j
~hhhi

2

= cos2 6 (~hhhi; wwwj) :

Because ~hhhi and wwwj are independent isotropic vectors, the quantity

jwwwyj
~hhhij

2 = cos2 6 (~hhhi;wwwj)

is beta distributed with parameters 1 and M � 1, and

sin2 6 (~hhhi;wwwj) = 1� cos2 6 (~hhhi;wwwj)

is beta distributed with parameters M � 1 and 1. Thus, the cumula-
tive distribution function (cdf) of X = sin2 6 (~hhhi;wwwj) is given by

Pr(X � x) = xM�1:

Let ĥhhi denote the quantization of the vector hhhi, i.e., the solution to
(2). Since the quantization vectors are independent, the quantization
error Z sin2 6 (~hhhi; ĥhhi) is the minimum of 2B independent beta

(M�1; 1) random variables, and the complementary cdf (ccdf) ofZ is
given byPr(Z � z) = (1�zM�1)2 [29, Lemma 1]. The expectation
of this quantity has been computed in closed form [29]

EHHH;W sin2 6 (~hhhi; ĥhhi) = 2B � � 2B ;
M

M � 1
: (8)

Here we use �(�) to denote the beta function, which is defined in terms
of the gamma function as �(x; y) = �(x)�(y)

�(x+y)
[30]. The gamma func-

tion is the extension of the factorial function to non-integers, and satis-
fies the fundamental properties �(n) = (n � 1)! for positive integers
and�(x+1) = x�(x) for allx[30]. While the derivation of (8) given in
[29] depends on the Pochmann symbol, this result can alternatively be
derived using an integral representation of the beta function, as shown
in Appendix I. Furthermore, a simple extension of inequalities given in
[29] gives a strict upper bound to the expected quantization error.

Lemma 1: The expected quantization error can be upper-bounded
as

EHHH;W sin2 6 (~hhhi; ĥhhi) < 2� :

Proof: See Appendix II.

To gain some intuition, consider that the “ideal” Voronoi region
around a quantization vector is a (two-sided) spherical cap of area
2�B , and sin2(�) of the angle between the center and a vector on the
boundary of such a cap is equal to 2� . Numerical results indicate
that this bound is tight in the difference sense but not in the ratio sense
as B ! 1. However, it is not difficult to show (using Lemma 6 and
(21) from Section VI) that the above quantity is lower-bounded by
(M�1

M
)2� and therefore is quite accurate in the even ratio sense.

Our later results indicate that the bound is indeed sufficiently precise
to accurately characterize throughput degradation due to finite-rate
feedback.

D. Point-to-Point MISO Systems With Finite Rate Feedback

In this section, we briefly review some basic results on point-to-
point MISO systems (i.e.,M transmit antennas, single receive antenna,
which is equivalent to the given system model with K = 1) with fi-
nite-rate feedback, under the assumption of i.i.d. Rayleigh fading. If the
transmitter has perfect CSI, it is well known that the optimum transmis-
sion strategy is to beamform along the channel vector hhh [31] and the
corresponding (ergodic) capacity is

CCSIT(P ) = Ehhh log 1 + Pkhhhk2 :

If the transmitter has no channel state information transmitter (CSIT)
and only has knowledge of the fading distribution, the optimum trans-
mission strategy is to transmit independent and equal power signals
from each of the M transmit antennas, and the corresponding capacity
is

Cno-CSIT(P ) = Ehhh log 1 +
P

M
khhhk2 :

Clearly

Cno-CSIT(P ) = CCSIT
P

M

and therefore, the lack of CSIT leads to a 10 log10M -decibel SNR loss
relative to perfect CSIT.

Providing the transmitter with partial CSIT via a finite-rate feedback
channel can be used to reduce this SNR loss. If the transmitter acquires
CSIT through the finite-rate feedback channel, an optimal or nearly
optimal strategy is to beamform in the direction of the quantization
vector.4 The average rate achieved with this strategy assuming RVQ is
used is given by

RFB(P ) =Ehhh;W log 1 + Pkhhhk2 cos2 6 (hhh; ĥhh)

�Ehhh log 1 + Pkhhhk2(1� 2� )

where we have based the approximation on the upper bound given in
Lemma 1, which is numerically quite accurate. Thus, the use of limited
feedback leads to an SNR degradation of approximately 10 log10(1�

2� ) decibels relative to perfect CSIT. Note that this approxima-
tion agrees with the expression derived for an asymptotically large
number of transmit antennas in [11]. If B = M � 1, for example,
a finite-rate feedback system is expected to perform within about 3 dB
of a perfect CSIT system. The capacity with CSIT, no CSIT, and fi-
nite-rate feedback with B =M � 1 = 3 is shown for a 4 � 1 MISO
system in Fig. 2. Notice that there is a 6-dB gap between the CSIT and
no CSIT curves, while the finite-rate feedback curve is 2.7 dB from the
perfect CSIT curve, which is quite close to our approximation of 3 dB.

The key point is that the feedback load need not be increased as a
function of SNR in order to maintain a constant power or rate gap rel-
ative to the perfect CSIT capacity curve in point-to-point MISO chan-
nels. This is perhaps not surprising, since the amount of feedback only
affects the cos2 6 (hhh; ĥhh) term and thus leads to only an SNR degrada-
tion. Furthermore, also note that the multiplexing gain (i.e., the slope of
the capacity curve) is not affected by the level of CSIT. For the MIMO
downlink channel, however, the multiplexing gain of an M -transmit
antenna, K user system is min(N;K) when there is perfect CSIT, but
is only 1 if there is no CSIT. Clearly, such a channel will be consider-
ably more sensitive to the accuracy of the CSIT obtained through the
finite-rate feedback channels.

4Conditions for the optimality of beamforming along the quantization direc-
tion are provided in [32]. Though these conditions are difficult to analytically
compute for most quantization codebooks, it is generally well accepted that
beamforming performs extremely close to capacity.
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Fig. 2. 4 � 1 MISO system with CSIT, no CSIT, and feedback.

IV. ZERO-FORCING PRECODING WITH FINITE-RATE FEEDBACK

In this section, we describe the proposed zero-forcing-based trans-
mission scheme. After the transmitter has received feedback bits from
each of theK receivers, an appropriate multiuser transmission strategy
must be chosen. We propose using zero-forcing beamforming based
on the channel quantizations available at the transmitter. Zero-forcing
is a low-complexity transmission scheme that can be implemented by
a simple linear precoder, and its performance is optimal among the
set of all linear precoders at asymptotically high SNR [20]. We later
provide numerical results describing the performance of regularized
zero-forcing precoding [27], which outperforms pure zero-forcing at
low SNRs but is equivalent to zero-forcing at asymptotically high SNR.

Note that dirty-paper coding cannot be directly applied in this sce-
nario because of the imperfection in CSIT. In order to implement dirty-
paper coding, the transmitter requires knowledge of the multiuser in-
terference at the receiver, and not at the transmitter. The received in-
terference clearly depends on the channel state, which is not known
perfectly at the transmitter in the finite-rate feedback model. The trans-
mitter could estimate the received interference based on the available
channel quantization, but even this estimated interference cannot be
canceled perfectly using dirty-paper coding due to the transmitter’s
imperfect knowledge of the received signal power. In order to imple-
ment dirty-paper coding, the transmitter must also know the received
SNR (in the absence of any interference) in order to properly select the
inflation factor, which is a key component in the dirty-paper coding
implementation [24]. Since the SNR also depends on the channel real-
ization, the transmitter only has an imperfect estimate of the SNR and
thus cannot properly select the inflation factor.

When the transmitter has perfect CSI, zero-forcing can be used to
completely eliminate multiuser interference by precoding transmission
by the inverse of the channel matrix HHH . This creates a parallel, nonin-
terfering channel to each of the M receivers, and thus leads to a mul-
tiplexing gain of M . In the finite-rate feedback setting, the imperfec-
tion in CSIT makes it impossible to completely eliminate all multiuser
interference, but a zero-forcing-based strategy can still be quite effec-
tive. Since the transmitter only has knowledge of the channel quanti-
zations but does not have any information regarding the magnitude or
spatial direction of the quantization error, a reasonable approach to take
is to select beamforming vectors according to the zero-forcing criterion
based on the channel quantizations.

Let ĥhhi refer to the quantized version of mobile i’s channel. These
quantized vectors are compiled into a matrix

ĤHH = [ ĥhh1 ĥhh2 � � � ĥhhM ]y :

The matrix ĤHH is the estimate of the channels, upon which zero-forcing
is performed. Thus, the beamforming vectors are chosen to be the nor-
malized columns of the matrix ĤHH

�1
. If equal power P

M
is used for each

of the data streams, the received SINR at the ith mobile is given by (6):

SINRi =
P

M
jhhhyivvvij

2

1 +
j 6=i

P

M
jhhhyivvvj j

2
: (9)

Since the beamforming vectors are chosen orthogonal to the channel
quantizations and not the actual channel realizations, the interference
terms in the denominator of the SINR expression are not zero. However,
these terms directly depend on the quantization error and thus can be
analyzed using the statistics of random vector quantization.

We study long-term average throughput (over both the fading distri-
bution and RVQ), and thus rateRi = EHHH;W [log

2
(1 + SINRi)] can be

achieved to user i if Gaussian inputs are used. By symmetry, the system
throughput is given by

RFB(P ) MEHHH;W [log
2
(1 + SINR1)] :

For a system that achieves a throughput of R(P ) (where P is the SNR,
or power constraint), the multiplexing gain is defined as

r = lim
P!1

R(P )

log
2
(P )

: (10)

V. THROUGHPUT ANALYSIS

In this section, we analyze the throughput of a feedback-based
zero-forcing system utilizing random vector quantization. We first
state some useful preliminary calculations, and then study the achieved
throughput for fixed and increasing feedback levels.

A. Preliminary Calculations

In this subsection, we prove a few useful results regarding the distri-
bution of terms in the SINR expression in (9). For the remainder of this
correspondence, we use ~hhhi to denote the normalized channel vector,
i.e., ~hhhi = hhhi=khhhik. Using this notation, we can rewrite the SINR as

SINRi =
P

M
khhhik

2j~hhh
y

ivvvij
2

1 +
j 6=i

P

M
khhhik2j~hhh

y

ivvvj j2
: (11)

We first make a simple observation regarding the numerator of this
expression.

Observation 1: The beamforming vector vvvi is isotropically dis-
tributed in M and is independent of the channel direction ~hhhi as well
as the channel quantization ĥhhi.

By the zero-forcing procedure, vvvi is chosen in the nullspace of
fĥhhjgj 6=i. Since RVQ is used and the channel directions f~hhhjgj 6=i are
independent isotropic vectors, the channel quantizations ĥhh1; . . . ; ĥhhM
are mutually independent isotropically distributed vectors. Thus,
the nullspace of fĥhhjgj 6=i is an isotropically distributed direction in
M , independent of either ~hhhi or ĥhhi. Clearly, the same is true if the

transmitter performs zero-forcing on the basis of perfect CSIT (i.e.,
ĥhhi = ~hhhi).

Next we characterize the interference terms that appear in the de-
nominator of the SINR expression:

Lemma 2: The random variable j~hhh
y

ivvvj j
2 for any i 6= j is equal to the

product of the quantization error sin2 6 (~hhhi; ĥhhi) and an independent

beta (1;M � 2) random variable.
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Proof: Without loss of generality, consider i = 2 and j = 1,
i.e., the term j~hhhy2vvv1j2. The vector vvv1 is chosen in the nullspace of
ĥhh2; . . . ; ĥhhM , each of which is an independent isotropically dis-
tributed vector. Therefore, vvv1 is isotropically distributed within the
(M � 1)-dimensional nullspace of ĥhh2. Now consider the normalized
channel vector ~hhh2. Since RVQ is used, the quantization error has
no preferential direction, i.e., the error is isotropically distributed in
M . Thus, conditioned on the magnitude of the quantization error

a sin2 6 (~hhhi; ĥhhi) , the channel direction can be written as the
sum of two vectors, one in the direction of the quantization, and the
other isotropically distributed in the nullspace of the quantization:
~hhh2 =

p
1� aĥhh2 +

p
asss, where sss is a unit norm vector isotropically

distributed in the nullspace of ĥhh2, and is independent of a. Therefore,
the random variable ~hhh2 can be written as

~hhh2 = (
p
1� Z)ĥhh2 +

p
Zsss

where sss and Z are independent, with sss isotropically distributed in the
nullspace of ĥhh2 and Z distributed according to the quantization error
distribution, i.e., the minimum of 2B beta (M�1; 1) random variables,
as described in Section III-C.

The inner product of ~hhh2 and vvv1 is then given by

j~hhhy2vvv1j2 =(1� Z)jĥhhy2vvv1j2 + Zjsssyvvv1j2
=Zjsssyvvv1j2:

Since sss and vvv1 are i.i.d. isotropic vectors in the (M � 1)-dimensional
nullspace of ĥhh2, the quantity jsssyvvv1j2 is beta (1;M � 2) distributed,
and is independent of Z .

Since a beta random variable has support [0; 1], we have

j~hhhyivvvj j2 � sin2 6 (~hhhi; ĥhhi) ; 8i 6= j (12)

i.e., the interference from any single user is no larger than the quantiza-
tion error. WhenM = 2, we clearly have j~hhhyivvvj j2 = sin2 6 (~hhhi; ĥhhi) ,
and no beta random variable is needed.

Finally, a derivation of the expectation of the logarithm of the quan-
tization error, which is useful in a few subsequent theorems, is given
as follows.

Lemma 3: The expectation of the logarithm of the quantization error
is given by

EHHH;W log2 sin2( 6 (~hhhi; ĥhhi)) = � log2 e

M � 1

2

k=1

1

k
:

Furthermore, this quantity can be bounded as

B

M � 1
� �EHHH;W log2 sin2( 6 (~hhhi; ĥhhi)) � B + log2 e

M � 1
:

Proof: See Appendix III.

B. Fixed-Feedback Quality

We now analyze the average throughput achieved by the proposed
zero-forcing scheme, and quantify the performance degradation as a
function of the feedback rate. In order to study the performance loss,
we define the rate gap �R(P ) to be the difference between the per
mobile throughput achieved by perfect CSIT-based zero-forcing and
finite-rate feedback-based zero-forcing

�R(P )
1

M
[RZF(P )�RFB(P )]:

In this expressionRZF(P ) refers to the throughput achieved by perfect
CSIT-based zero-forcing (i.e., ĥhhi = ~hhhi), which is given by

RZF(P ) = MEHHH log2 1 +
P

M
jhhhyivvvZF;ij2

where each beamforming vector vvvZF;i is chosen orthogonal to
fhhhjgj 6=i.

Theorem 1: Finite-rate feedback with B feedback bits per mobile
incurs a throughput loss relative to perfect CSIT zero-forcing upper-
bounded by

�R(P ) < log2 1 + P � 2� :

Proof: The rate gap can be upper-bounded as

�R(P ) =EHHH log2 1 +
P

M
jhhhyivvvZF;ij2 �

EHHH;W log2 1 +
P

M
jhhhyivvvij2

1 +
j 6=i

P

M
jhhhyivvvj j2

=EHHH log2 1 +
P

M
jhhhyivvvZF;ij2 �

EHHH;W log2 1 +
P

M
jhhhyivvvij2 +

j 6=i

P

M
jhhhyivvvj j2

+ EHHH;W log2 1 +
j 6=i

P

M
jhhhyivvvj j2

(a)

�EHHH log2 1 +
P

M
jhhhyivvvZF;ij2 �

EHHH;W log2 1 +
P

M
jhhhyivvvij2

+ EHHH;W log2 1 +
j 6=i

P

M
jhhhyivvvj j2

(b)
=EHHH;W log2 1 +

j 6=i

P

M
jhhhyivvvj j2

where (a) follows because
j 6=i

P

M
jhhhyivvvj j2 � 0 and log(�) is a mono-

tonically increasing function. To get (b), note that vvvZF;i and vvvi are
each isotropically distributed unit vectors, independent of hhhi (Obser-
vation 1), which implies

EHHH log2 1+
P

M
jhhhyivvvZF;ij2 =EHHH;W log2 1+

P

M
jhhhyivvvij2

Applying Jensen’s inequality to the upper bound in (b) and exploiting
the independence of the channel norm (which satisfiesE[khhhik2] = M )
and channel direction, we get

�R(P ) � log2 1 +
P

M
(M � 1)E[khhhik2]E[j~hhhyivvvj j2]

= log2 1 + P (M � 1)E[j~hhhyivvvj j2] :

By Lemma 2, the term E[j~hhhyivvvj j2] is the product of the expectation of
the quantization error and the expectation of a beta (1;M �2) random
variable, which is equal to 1

M�1
. Using Lemma 1, we have

�R(P ) � log2 1 + P � E[sin2( 6 (~hhhi; ĥhhi))]

< log2 1 + P � 2� :

The most important feature to notice is that the rate loss is an in-
creasing function of the system SNR (P ), which can be explained by
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the linear relationship betweenP and the multiuser interference power.
This intuition motivates the following result, which shows that a finite-
rate feedback system with fixed feedback quality is interference-lim-
ited at high SNR.

Theorem 2: The throughput achieved by finite-rate feedback-based
zero-forcing with a fixed number of feedback bits per mobile B is
bounded as the SNR is taken to infinity

RFB(P ) �M 1 +
B + log2 e

M � 1
+ log2(M � 2) + log2 e :

Proof: Consider the following upper bounds to the throughput
RFB(P ):

1

M
RFB(P ) =EHHH;W log2 1 +

P

M
khhhik

2j~hhh
y

ivvvij
2

1 +
j 6=i

P

M
khhhik2j~hhh

y

ivvvj j2

(a)

�EHHH;W log2 1 +
j~hhh
y

ivvvij
2

j~hhh
y

ivvvj j2

(b)

�1� EHHH;W log2 j~hhh
y

ivvvj j
2 (13)

where in (a) we consider only one of the multiuser interference terms,

and (b) uses the fact that j~hhh
y

ivvvj j � 1 and j~hhh
y

ivvvij � 1. By Lemma

2, j~hhh
y

ivvvj j
2 is the product of the quantization error and a beta random

variable (denoted by Y ). Thus, we have

�EHHH;W log2 j~hhh
y

ivvvj j
2

= � EHHH;W log2 sin2( 6 (~hhhi; ĥhhi)) �EY [log2 Y ]

=
log2 e

M � 1

2

k=1

1

k
+ log2 e

M�2

k=1

1

k

�
B + log2 e

M � 1
+ log2(M � 2) + log2 e

where we have used Lemma 3 as well as the easily verifiable fact that

E[� log2 Y ] = (log2 e)

M�2

k=1

1

k
� log2(M � 2) + log2 e

when Y is beta (1;M � 2).

Regardless of how many feedback bits (B) are used, the system even-
tually becomes interference limited because interference and signal
power both scale linearly with P . In Fig. 3, the performance of a five-
antenna, five-user system with 10, 15, and 20 feedback bits per mobile
is shown. When the SNR is small, limited feedback performs nearly
as well as zero-forcing. However, as the SNR is increased, the limited
feedback system becomes interference limited and the rates converge
to an upper limit, as expected. Although the upper bound in Theorem 2
is quite loose in general, it does correctly predict the roughly linear de-
pendence of the limiting throughput and B.

Notice that this interference-limited behavior can easily be avoided
by serving only one user, i.e., using TDMA, but this only provides a
multiplexing gain of one. However, as validated by numerical results
in Section VII, TDMA is actually preferable to feedback-based zero-
forcing at high SNRs if B is kept fixed.

C. Increasing Feedback Quality

In this subsection, we show that the interference-limited behavior
experienced in fixed-feedback systems can be avoided by scaling the
feedback rate linearly with the SNR (in decibels). In fact, if the feed-
back rate is scaled at the appropriate rate, the full multiplexing gain of

Fig. 3. 5 � 5 channel with fixed number of feedback bits.

M is achievable. In addition to achieving the full multiplexing gain, it
is also desirable to maintain a constant rate offset �R(P ) between the
rates achievable with zero-forcing with perfect CSI and with finite-rate
feedback. Note that if a bounded rate gap is maintained as SNR is taken
to infinity, the full multiplexing gain is also achieved. The following
theorem specifies a sufficient scaling of feedback bits to maintain a
bounded rate gap.

Theorem 3: In order to maintain a rate offset no larger than log2 b
(per user) between zero-forcing with perfect CSI and with finite-rate
feedback (i.e., �R(P ) � log2 b 8P ), it is sufficient to scale the
number of feedback bits per mobile according to

B =(M � 1) log2 P � (M � 1) log2(b� 1) (14)

�
M � 1

3
PdB � (M � 1) log2(b� 1): (15)

Proof: In order to characterize a sufficient scaling of feedback
bits, we set the rate gap upper bound given in Theorem 1 equal to the
maximum allowable gap of log2 b

�R(P ) < log2 1 + P � 2� log2 b:

By inverting this expression and solving for B as a function of b and
P we get

B =(M � 1) log2 P � (M � 1) log2(b� 1) (16)

=
(M � 1) log2 10

10
PdB � (M � 1) log2(b� 1)

�
M � 1

3
PdB � (M � 1) log2(b� 1): (17)

With this scaling of feedback bits, we clearly have �R(P ) < log2 b
for all P , as desired.

The rate offset of log2 b (per user) can easily be translated into a
power offset, which is a more useful metric from the design perspec-
tive. Since a multiplexing gain of M is achieved with zero-forcing, the
zero-forcing curve has a slope of M bps/Hz/3 dB at asymptotically
high SNR. Therefore, a rate offset of log2 b bps/Hz per user, or equiv-
alently M log2 b bps/Hz in throughput, corresponds to a power offset
of 3 log2 b decibels [33], [34]. Thus, b = 2 corresponds to a 1-bps/Hz
rate offset per user or equivalently a 3-dB power offset. The resulting
scaling of bits takes on a particularly simple form when a 3-dB offset
is desired

B =
M � 1

3
PdB bits=mobile:

(18)
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Fig. 4. 5 � 5 channel with increasing number of feedback bits.

Fig. 5. 6 � 6 channel with increasing number of feedback bits.

In order to achieve a smaller power offset, b needs to be made appropri-
ately smaller. For example, a 1-dB offset corresponds to b = 101=10 =
1:259 and thus additional 1:95(M � 1) feedback bits are required at
all SNRs.

In Fig. 4, throughput curves are shown for a five-antenna, five-user
system. The feedback load is assumed to scale according to the rela-
tionship given in (18), and limited feedback is seen to perform within
2.6 dB of perfect CSI zero-forcing. Notice that the actual power offset
is smaller than 3 dB primarily due to the use of Jensen’s inequality in
deriving the upper bound to �R(P ) in Theorem 1. The sum capacity,
which outperforms zero-forcing by 5.55 dB in a 5 � 5 system [20], is
also shown. In Fig. 5, throughput curves are shown for a six-antenna,
six-user system. In this figure,B is scaled to guarantee a 3- and a 6-dB
gaps from perfect CSIT zero-forcing (i.e., b = 2 and b = 4 in (15)).
Again, the actual gaps are smaller than the bounds (2.5 and 5 dB, re-
spectively), but are still sufficiently close to make the bounds useful.
Fig. 6 plots the rate �R(P ) in a 5 � 5 system at an SNR of 25 dB
against the number of feedback bits, along with the upper bound from
Theorem 1 that is used to derive the scaling relationship in Theorem 3.
While 33.3 bits are required for the upper bound to equal 1 bps/Hz,
only 31 bits are needed to have the true rate loss be equal to unity.
Thus, we see that the sufficient scaling relationship given in Theorem
3 only slightly overestimates the actual required feedback rate. In addi-
tion, notice that the upper bound tracks the true rate loss quite closely,
and appears to converge when B becomes large.

Fig. 6. 5 � 5 channel at 25 dB.

IfB is scaled with SNR at a rate strictly greater than (M�1) log
2
P ,

i.e., B = � log
2
P for any � > M � 1, the upper bound to the rate

gap (Theorem 1) is easily seen to converge to zero

lim
P!1

�R(P ) � lim
P!1

log
2

1 + P � 2� = 0

which implies that the actual rate gap also converges to zero. Thus, the
throughput achieved with limited feedback converges (absolutely) to
the perfect CSIT throughput at asymptotically high SNR under such
scaling. However, scaling B at a rate slower than (M � 1) log

2
P re-

sults in a strict reduction in the multiplexing gain, as shown by the
following theorem.

Theorem 4: If B is scaled as B = � log
2
P for � � M � 1, the

throughput curve achieves a multiplexing gain of M �
M�1

.
Proof: See Appendix IV.

Intuitively, the signal power grows linearly with P , while the inter-
ference power scales as the product of P and the quantization error.
Since the quantization error is of order P� (which is equal to
2� ), the interference power scales as P (1� ), which gives an
SNR that scales as P . Thus, the rate to each user is given by

log 1 + P �
�

M � 1
log

2
P

and the resulting multiplexing gain is M �
M�1

.
In Fig. 7, the throughputs achieved with feedback rates given byB =

0:5(M � 1) log
2
P and B = 1:3(M � 1) log

2
P in a 4 � 4 channel

are shown. When � = 0:5(M � 1), the achieved multiplexing gain
is only 0:5M = 2, which corresponds to a slope of 2 bps/Hz per 3
dB. On the other hand, when � = 1:3(M � 1), the full multiplexing
gain is achieved and the rate gap relative to perfect CSIT zero-forcing
converges to zero at high SNR.

The required scaling of feedback with the system SNR indeed re-
sults in rather high feedback requirements in relatively high mobility
environments (i.e., short coherence times). As a result, fixed-rate feed-
back channels may not be able to support the required loads at high
SNRs. However, if the SNR on the feedback channel is the same as the
downlink SNR (P ), the feedback requirements may actually be feasible
because the required feedback per mobile scales with log

2
P , which

approximates the capacity of such a reciprocal feedback channel.

D. Regularized Zero-Forcing

Although zero-forcing precoding performs very well at moderate
and high SNRs, regularization can significantly increase throughput
at low SNRs [27]. In fact, this is exactly analogous to the difference
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Fig. 7. Multiplexing gain as a function of feedback scaling.

between zero-forcing equalization and minimum mean-square error
(MMSE) equalization: while zero-forcing results in complete can-
cellation of (intersymbol) interference, an MMSE equalizer allows
a measured amount of interference into the filtered output such
that the output SNR is maximized. Regularized zero-forcing is also
implemented through a linear precoder, but with a slightly different
selection of beamforming vectors. If ĤHH denotes the concatenation of
quantization vectors available to the AP, the zero-forcing beamforming
vectors are chosen as the normalized columns of ĤHH

�1

, or equivalently
of ĤHH

y
(ĤHHĤHH

y
)�1. With regularized zero-forcing, the beamforming

vectors vvv1; . . . ; vvvK are chosen to be the normalized columns of the
matrix

ĤHH
y

ĤHHĤHH
y
+
M

P
III

�1

:

The use of the regularization constant M
P

is well motivated by results
in [27] as well as the optimal MMSE filters on the dual multiple-access
channel [17]. It is clear from this regularization that the regularized
beamforming vectors will converge to standard zero-forcing vectors at
asymptotically high SNR.

Since the rates achieved by zero-forcing and regularized zero-forcing
converge at asymptotically high SNR, the feedback scaling specified
in Theorem 3 gives the desired rate/power offset for regularized zero-
forcing at asymptotically high SNR. Although we have not been able
to extend Theorems 1 or 3 to the rate offset between regularized zero-
forcing based on perfect versus feedback-based CSIT, numerical results
indicate that these results actually hold at all SNRs, and not just at very
high SNR values. In fact, numerical results indicate that Theorem 3
more accurately predicts the rate offset for regularized zero-forcing
than for standard zero-forcing at low and moderate SNR values.

Throughput curves for zero-forcing (solid lines) and regularized
zero-forcing (dotted lines) with perfect CSIT and feedback-based
CSIT (with B = M�1

3
PdB ) are shown for a 5 � 5 channel in Fig. 8.

The throughput achieved with regularized zero-forcing with perfect
CSIT is significantly larger (by approximately 4 bps/Hz) than the
throughput with perfect CSIT-based zero-forcing for SNRs between
0 and 15 dB, but the two curves converge at very high SNR. The
same is true for the throughput achieved with finite-rate feedback and
regularized zero-forcing versus standard zero-forcing. Furthermore,
while the rate offset between perfect CSIT-based zero-forcing and
feedback-CSIT zero-forcing increases from nearly zero at low SNR
to its limiting value at high SNR, the rate offset between the two
regularized zero-forcing curves is relatively constant over the entire
SNR range, as noted earlier.

Fig. 8. 5 � 5 channel with regularized zero-forcing.

VI. EXTENSIONS TO GENERAL VECTOR QUANTIZATION

While the results of the previous section accurately characterize the
performance of an RVQ-based zero-forcing system, it is important to
determine if a system based on some optimized vector quantization
codebook can significantly outperform RVQ-based systems. As the fol-
lowing results show, the general results from the RVQ analysis hold
for any choice of quantization codebooks: fixed feedback rate systems
achieve only a bounded throughput, and feedback rate must be in-
creased proportionally to the system SNR in order to achieve the full
multiplexing gain. In order to show these results, we analyze the per-
formance of a zero-forcing/feedback-based system as described in Sec-
tion IV for an arbitrary set of quantization codebooks. Thus, each mo-
bile performs channel quantization according to some specified quan-
tization codebook using the criterion in (2). We first establish a bound
on the multiuser interference experienced as only a function of the
size of each quantization codebook, and then use this bound to ana-
lyze throughput performance.

Lemma 4: Consider an arbitrary L-vector quantization codebook
fwww1; . . . ; wwwLg for mobile i, and let the random variable Xij denote
the interference incurred at mobile i from the beam intended for user j:
Xij = j~hhh

y

ivvvj j
2. For any i 6= j, the random variable Xijstochastically

dominates the random variable ~X , whose cdf is given by

F ~X(x) =
L(1� xM�1); 0 � x � 1� 1� 1

L

1; 1� 1� 1

L
� x � 1

(19)

or F ~X(x) � FX (x) for all 0 � x � 1.
Proof: See Appendix V.

The following lemma quantifies the expectation of the logarithm of
the lower bound given above, as well as its behavior if B is scaled with
the SNR.

Lemma 5: The expectation of the logarithm of the random variable
~X defined in Lemma 4, i.e., E[log

2
~X], is finite for fixed L. Further-

more, if the codebook size L is scaled with power as B = � log
2
P

with L = 2B , the multiplexing gain of the same quantity is upper-
bounded by �

lim
P!1

E[� log
2
( ~X)]

log
2
P

� �:

Proof: See Appendix VI.

Using these lemmas, it is possible to extend the result of Theorem 2
on fixed feedback rate systems to arbitrary quantization codebooks.
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Theorem 5: The throughput achieved by finite-rate feedback-based
zero-forcing with arbitrary quantization codebooks of fixed size is
bounded as the SNR is taken to infinity.

Proof: All steps used in the proof of Theorem 2 leading to (13)
apply to arbitrary codebooks. Thus, the per user throughput for arbi-
trary codebooks is bounded by

1

M
RFB(P ) � 1� EHHH log

2
j~hhh
y

ivvvj j
2

for any i 6= j. Because j~hhh
y

ivvvj j
2 stochastically dominates ~X , we have

E log
2
j~hhh
y

ivvvj j
2 � E[log

2
~X]:

Thus, per-user throughput is bounded by 1�E[log
2
~X], which is finite

due to Lemma 5.

The result here is quite intuitive: because the interference power
grows linearly with signal power for any quantization codebook, the
system eventually becomes interference limited and thus has bounded
throughput.

It is also possible to prove a slightly weakened version of Theorem
4 relating feedback scaling and multiplexing gain to arbitrary quanti-
zation codebooks:

Theorem 6: A finite-rate feedback-based zero-forcing system in
which per-user feedback is scaled at rate B = � log

2
P can achieve a

multiplexing gain no larger than �M . Therefore, a necessary condition
for achieving the full multiplexing gain of M is to scale feedback at
least as B = log

2
P .

Proof: Using steps identical to the multiplexing upper bound
established in Appendix IV, the multiplexing gain m can be
upper-bounded by

m �M � lim
P!1

MEHHH;W log
2

1 + P

M j 6=i
jhhhyivvvj j

2

log
2
P

�M lim
P!1

�E[log
2
j~hhh
y

ivvvj j
2]

log
2
P

:

Since E log
2
j~hhh
y

ivvvj j
2 � E[log

2
~X] we have

lim
P!1

�E[log
2
j~hhh
y

ivvvj j
2]

log
2
P

� lim
P!1

�E[log
2
~X]

log
2
P

� �;

where the final inequality is due to Lemma 5. Thus, the multiplexing
gain is upper-bounded by �M .

If RVQ is used, scaling feedback as B = � log
2
P provides a multi-

plexing gain ofM �

M�1
, and thus,B = (M�1) log

2
P is both nec-

essary and sufficient to achieve the full multiplexing gain. If arbitrary
codebooks are allowed, the preceding theorem shows thatB = log

2
P

is a necessary condition for achieving full multiplexing. Although the
necessary conditions for full multiplexing do not exactly match for
RVQ and arbitrary quantization codebooks (except for M = 2), in-
creasing feedback linearly with log

2
P , i.e., the SNR, in decibels, is

required for any choice of quantization and thus is an inherent quality
of any finite-rate feedback/zero-forcing-based system.

The gap in the pre-log term in the necessary conditions appears to
be a result of the weakness of the bound on interference power given
in Lemma 4 rather than due to suboptimality of RVQ. Quantization
error can be shown to decrease to zero at a rate no faster than 2�

(corresponding to P� ) by using Lemma 6, while Lemma 4 lower-
bounds the rate of decrease of interference by only 2�B (corresponding
toP��). We conjecture thatB = (M�1) log

2
P is actually necessary

for arbitrary codebooks as well, but a more accurate bound than given
in Lemma 4 is required to show this.

If each mobile uses an arbitrary quantization codebook multiplied
by a random unitary matrix (i.e., performs a random and independent
rotation of each of the quantization codebooks [12]), then it is not dif-
ficult to show that B = (M � 1) log

2
P is indeed necessary for full

multiplexing. In this scenario, the proof of Lemma 2 holds and each
interference term j~hhh

y

ivvvj j
2 is equal to the product of the quantization

error and a beta (1;M � 2) random variable. In addition, a very accu-
rate lower bound to the quantization error of any vector quantization
codebook has previously been established.

Lemma 6 ([35], [5]): The quantization error sin2( 6 (~hhhi; ĥhhi)) in-
curred by any B-bit quantization of an isotropically distributed vector
stochastically dominates the random variable ~Z , whose cdf is given by

F~Z(z) =
2BzM�1; 0 � z � 2�

1; z � 2� :
(20)

Using these facts, we can use the framework of Theorem 3 to de-
termine the sufficient scaling of feedback that provides a 3-dB offset
from perfect CSIT for a (possibly hypothetical) system that uses op-
timal vector quantization codebooks. In order to compute this scaling,
we first must compute the expectation of ~Z . A simple calculation yields

E[ ~Z] =
1

0

(1� F~Z(z))dz =
M � 1

M
2� :

Notice that this differs from the upper bound to the RVQ error
(Lemma 1) only in the term M�1

M
, and thus, the interference power is

reduced by at most a factor of M�1

M
. In order to solve for the required

feedback with this bound on the quantization error we set

log
2

1 + P �
M � 1

M
2� log

2
b

and solve for B, which gives

B = (M � 1) log
2
P � (M � 1) log

2
(b� 1)

�(M � 1) log
2

M

M � 1
: (21)

Comparing this with the similar term for RVQ in (16), we see that the
bit savings is a constant factor of (M�1) log

2

M

M�1
bits at all SNRs.

Furthermore, using the fact that loge(1 + x) � x for x > 0 we have

(M � 1) loge
M

M � 1
� 1 nat = log

2
e bits � 1.44 bits:

Thus, using RVQ leads to at most a 1.44-bit penalty relative to op-
timum vector quantization, which is quite small relative to the total
feedback load. Of course, this is only an approximation to the subopti-
mality of RVQ because we have compared sufficient conditions on the
feedback rate for RVQ-based and optimal quantization-based systems.
However, numerical results indicate that the sufficient conditions pro-
vided by Theorem 3 are actually quite close to necessary conditions,
and thus this comparison is in fact quite accurate.

An alternative method to measure RVQ against optimum vector
quantization is to compare the performance for the same number of
feedback bits, as opposed to the above analysis in which we compared
the required feedback load required for identical performance. As
stated earlier, the quantization error, and thus the interference, is a
factor of M�1

M
smaller in the lower bound. If the feedback is scaled in

order to maintain a 3-dB gap from perfect CSI zero forcing, the noise
and interference term are kept bounded by two (which corresponds to
3 dB). The lower bound, on the other hand, would be 1+ M�1

M
instead
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Fig. 9. 4 � 4 channel with scaled feedback, TDMA, and random BF.

of 2. For M = 5, this corresponds to 2.55 dB, or a 0.45-dB advantage
relative to RVQ. As the number of transmit antennasM increases, this
gap clearly goes to zero. Note that this is in accordance with results
on the optimality of RVQ for large point-to-point MIMO and MISO
systems [11].

VII. PERFORMANCE COMPARISON

In this section, we present numerical results comparing the
throughput achieved with finite-rate feedback and two alternative
transmission techniques for the MIMO downlink, random beam-
forming and TDMA. Because regularized zero-forcing outperforms
zero-forcing at all SNRs, we only consider regularized zero-forcing
systems.

Random beamforming (BF) is an extension of opportunistic beam-
forming [36] to the multiple-antenna downlink [7]. The transmitter
randomly chooses M orthogonal beamforming vectors and transmits
pilot symbols along these vectors. Each mobile measures the SINR
of each beamforming vector, and feeds back the index of the vector
with the highest SINR (requiring log

2
M bits), along with the corre-

sponding SINR. The AP then transmits to the best user on each of the
beamforming vectors. The required feedback per mobile is quite small
(log

2
M bits plus an analog SNR value, which will presumably be suf-

ficiently quantized), but this scheme does not perform well in systems
with a moderate number of mobiles (i.e.,K �M ). In addition, random
beamforming is interference limited at asymptotically large SNR if the
number of mobiles is kept fixed.

TDMA, in which the AP serves a single user at a time, is perhaps
the simplest downlink transmission scheme. We consider the TDMA
throughput achievable with perfect CSIT, in which the AP transmits
(using the capacity-achieving beamforming strategy) to only the user
with the largest SNR. While it is possible to incorporate the effect of fi-
nite-rate feedback into a TDMA system (as described in Section III-D),
the effect is relatively negligible at the feedback levels considered here
and thus, for simplicity, we consider perfect CSIT. Since a TDMA
system achieves a multiplexing gain of only one, we expect to see a sig-
nificant throughput degradation if TDMA is used, particularly at high
SNR. However, note that the difference between the sum capacity of
the MIMO downlink (achieved by dirty-paper coding) and the achiev-
able TDMA throughput is not particularly large at SNRs less than 5 or
10 dB [2].

Fig. 9 plots achievable throughput for a finite-rate feedback system
with B scaled to maintain a 3-dB offset (18), TDMA, and random
beamforming, in a 4 � 4 channel. Finite-rate feedback outperforms

Fig. 10. 4 � 4 channel with fixed feedback, TDMA, and random BF.

Fig. 11. 8 � 8 channel with feedback, TDMA, and random BF.

random BF beyond 5 dB, which is not surprising given that the feed-
back level per mobile (which is given by B = PdB for this partic-
ular channel) is significantly higher than for random BF. Finite-rate
feedback and TDMA give approximately the same throughput up to
10 dB, after which the feedback system begins to significantly outper-
form TDMA, due to the superior multiplexing gain of the zero-forcing
system. The same channel is considered in Fig. 10, but with fixed feed-
back levels (B = 5; 10; 15; 20) in the finite-rate feedback system.5

Here we see that TDMA is a better choice than finite-rate feedback
with either 5 or 10 bits of feedback per mobile. If 15 or 20 feedback
bits are permitted, however, finite-rate feedback can provide a signifi-
cant advantage over TDMA, particularly above 10 dB.

Fig. 11 displays achievable throughput in an 8� 8 channel for finite-
rate feedback systems with B scaled according to (18) and with B =

20, along with TDMA and random BF throughputs. The throughput
achieved with scaled feedback is considerably larger than the TDMA
throughput, due to the large number of spatial degrees of freedom used
by the zero-forcing system. The 20 feedback bit system outperforms
TDMA at moderate SNRs, but hits the interference limited regime
around 15 or 20 dB.

In general, finite-rate feedback-based zero-forcing outperforms
TDMA at SNRs above 5 or 10 dB if the feedback per mobile is
sufficiently large, but does not provide a significant advantage at
low SNRs. Furthermore, random beamforming is outperformed by
both TDMA and finite-rate feedback at essentially all SNR levels.
However, this is largely due to the limited number of mobiles, as

5Note that the finite-rate feedback throughput decreases with SNR in some
cases due to the decreasing regularization factor as a function of the SNR. A
more careful tuning of this parameter can prevent this behavior, but does not
significantly increase throughput.
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random beamforming does provide excellent performance in systems
with many more mobiles than AP antennas.

VIII. CONCLUSION

The use of multiuser MIMO techniques can significantly increase
downlink throughput without requiring large numbers of antennas at
each mobile device. However, it is crucial that the transmitter have ac-
curate CSI in order to realize these gains. In fact, the availability of CSI
appears to be the critical issue that will determine the feasibility of mul-
tiuser MIMO techniques in future wireless communication systems.

We investigated the finite-rate feedback model, in which each mo-
bile quantizes its channel realization to a finite number of bits that
are fed back to the transmitter. Although this model has been exten-
sively studied for point-to-point MIMO channels, conclusions are quite
different in the multiuser setting. Our primary result showed that the
number of feedback bits per mobile must be increased linearly with
the SNR (in decibels) in order to achieve the full multiplexing gain of
the channel if zero-forcing precoding is performed on the basis of the
channel feedback. As a result of this, feedback levels are quite high in
MIMO downlink channels: in a four-antenna system, for example, each
mobile must feed back 10 bits at an overall system SNR of 10 dB. In
contrast, feedback does not need to scale with SNR in point-to-point
MIMO systems, and even a relatively small number of bits (e.g., 4 or
5) can be very beneficial at all SNR levels.

The intuition for the extreme sensitivity of the MIMO downlink
channel to imperfection in CSIT, as compared to point-to-point MIMO
channels, is relatively straightforward. In point-to-point MIMO chan-
nels, imperfect CSIT leads to mismatch between the input and the trans-
mission modes of the channel and thus some “wasted” transmission
power (i.e., power that is transmitted into the nullspace of the channel),
which reduces the received SNR but has no other deleterious effect. In
a MIMO downlink channel, imperfect CSIT also leads to mismatch be-
tween the input and the channel, but the effect is considerably stronger
because all misdirected transmission leads to increased multiuser inter-
ference, which is significantly more harmful than a reduction in desired
signal power.

Although feedback requirements are quite stringent, there are a
number of reasons to be optimistic regarding CSI feedback in down-
link channels. First, note that we have considered only the most basic
i.i.d. Rayleigh block-fading model, and feedback rates can surely be
decreased by exploiting spatial and temporal correlation inherent in
any physical fading process, as has already been extensively studied
for point-to-point MIMO channels [37]–[40]. Furthermore, recent
work has shown that a small number of mobile antennas can be used
to significantly improve quantization quality and thereby decrease the
required feedback rates [41]. In addition, it may also be possible to
exploit multiuser diversity effects and thereby reduce feedback rates
in systems with a large number of mobiles [7], [14], [9]. Within this
body of work, one interesting idea is to have only a subset of mobiles
(e.g., mobiles meeting some SNR threshold) feed back their channel
information [42], [43], [9]. While this technique can significantly
reduce the total number of feedback bits to be transmitted, it also
requires contention-based feedback (i.e., random access), which can
lead to throughput reduction as well as additional latency on the feed-
back channels. Although we have considered only digital feedback
methods, analog feedback appears to have a number of attractive
properties for the downlink channel [13], [44]–[46]. Finally, if the
feedback channel from each of the mobiles has the same SNR as
the downlink channel, which may be reasonable in certain scenarios,
then the required feedback levels may be supportable if near-capacity
signaling is used over the feedback channel.

We close by mentioning a few important issues not considered in
this work. One key assumption made in this work is that the channel

feedback is instantaneous. Of course, there will be some nonzero delay
associated with transmitting feedback bits from the mobiles to the AP,
and this delay can be quite significant in fast fading (large Doppler
spread) channels. In fact, results in [46] indicate that feedback delay
can severely limit the performance of certain downlink transmission
schemes at even moderate levels of Doppler. In addition, each mo-
bile is assumed to have perfect CSI, while there will be nonzero re-
ceiver estimation error in any practical system. This will clearly lead
to additional imperfection in the CSI provided to the AP, and could
have significant effects. Frequency-selective channels also require at-
tention; consider related work on frequency-selective point-to-point
MIMO channels [47], [48]. Furthermore, note that we have only con-
sidered FDD systems. Channel reciprocity can be exploited to acquire
downlink channel state information from the uplink in time-division
duplexed (TDD) channels, although recent results indicate that, some-
what counter-intuitively, TDD may in fact be less attractive than FDD
from a channel state information perspective [44]. Many of the tools
used here appear to be well suited to analyze the effect of imperfect
CSIT in TDD systems as well. Finally, we note that the analysis per-
formed here applies only to linear precoding strategies. Determining
how far the proposed achievability scheme is from the true capacity of
the MIMO downlink channel with imperfect CSIT is a challenging un-
solved information-theoretic problem.

APPENDIX I
EXPECTED QUANTIZATION ERROR

In this appendix, we provide an alternative proof for the closed-form
representation of the expected quantization error. The following inte-
gral representation for the beta function is given in [49, p. 5]:

� c;
a

b
=b

1

0

z
a�1 1�z

b
c�1

dz; a > 0; b > 0; c > 0:

With a = 1, b = M � 1, and c = 2B + 1 this yields

� 2B + 1;
1

M � 1
= (M � 1)

1

0

1� z
M�1

2

dz:

Using the fact that Pr sin2 6 (~hhhi; ĥhhi) � z = (1� zM�1)2 , we
have

EHHH;W sin2 6 (~hhhi; ĥhhi) =
1

0

(1� z
M�1)2 dz

=
1

M � 1
� 2B + 1;

1

M � 1

=

1

M�1
� 2B + 1 � 1

M�1

� 2B + 1 + 1

M�1

=
2B� 2B � 1 + 1

M�1

� 2B + 1 + 1

M�1

=2B � � 2B ;
M

M � 1

where we have used the fundamental equality �(z + 1) = z�(z).

APPENDIX II
PROOF OF LEMMA 1

The expected quantization error is given by [29]

EHHH;W sin2 6 (~hhhi; ĥhhi) = 2B � � 2B ;
M

M � 1
: (22)
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For M = 2, we have

2B � � 2B ; 2 =
2B�(2B)�(2)

� (2B + 2)

=
2B !

(2B + 1)!

= 2B + 1
�1

< 2�B:

For M > 2

2B � � 2B ;
M

M � 1
=2B

�(2B)� 1 + 1
M�1

� 2B + 1 + 1
M�1

�
2B�(2B)

� 2B + 1 + 1
M�1

=
�(2B + 1)

� 2B + 1 + 1
M�1

:

The preceding inequality is reached because �(x) � 1 for 1 � x �
2, due to the convexity of the gamma function [30] and the fact that
�(1) = �(2) = 1. By applying Kershaw’s inequality for the gamma
function [50]

�(x+ s)

�(x+ 1)
< x +

s

2

s�1

; 8x > 0; 0 < s < 1

with x = 2B + 1
M�1

and s = 1� 1
M�1

we get

�(2B + 1)

� 2B + 1 + 1
M�1

< 2B +
M

2(M � 1)

�

:

Furthermore, the decreasing nature of the function (�)� gives a
further upper bound of 2� .

APPENDIX III
PROOF OF LEMMA 3

Let Z = sin2(6 (~hhhi; ĥhhi)) represent the quantization error. As stated
in Section III-C, Z is the minimum of 2B beta (M � 1; 1) random
variables with ccdf given by Pr(Z � z) = (1 � zM�1)L, where
L = 2B . We wish to computeE[loge Z], or equivalentlyE[� loge Z].
Since 0 � Z � 1, the random variable � loge Z is nonnegative with
support [0;1). Using the fact that E[X] =

1

0
Pr(X � x)dx for

nonnegative random variables and the binomial expansion, we have

E[� loge Z] =
1

0

Pr(Z � e
�z)dz

=
1

0

1� (1� e
�z(M�1))Ldz

=
1

0

1�

L

k=0

L

k
(�1)ke�z(M�1)kdz

=
1

0

L

k=1

L

k
(�1)k+1e�z(M�1)kdz

=
1

M � 1

L

k=1

L

k

(�1)k+1

k

=
1

M � 1

L

k=1

1

k

where the final line follows from [51, Sec. 0.155].

Furthermore, since loge a =
a

1
1
x
dx, we have

loge L �

L

k=1

1

k
� loge L+ 1:

We multiply by log2 e to translate to base 2, and thus get

E[� log2 Z] =
log2 e

M � 1

L

k=1

1

k
:

Using L = 2B we get the subsequent bounds.

APPENDIX IV
PROOF OF THEOREM 4

The multiplexing gain can be expanded as

m lim
P!1

MEHHH;W [RFB(P )]

log2 P

= lim
P!1

MEHHH;W log2 1+ P

M
jhhhyivvvij

2+ P

M j 6=i jhhh
y
ivvvj j

2

log2 P

� lim
P!1

MEHHH;W log2 1 + P

M j 6=i jhhh
y
ivvvj j

2

log2 P

=M� lim
P!1

MEHHH;W log2 1+ P

M j 6=i jhhh
y
ivvvj j

2

log2 P
: (23)

The final step follows because the quantity

log2 1 +
P

M
jhhhyivvvij

2 +
P

M
j 6=i

jhhhyivvvj j
2

is lower-bounded by log2 1 + P

M
jhhhyivvvij

2 and is upper-bounded by

log2 1 + Pkhhhik
2 , and the multiplexing gain of the upper and lower

bounds are easily shown to be one.
We first show that m � �

M�1
(using L = 2B = P�)

EHHH;W log2 1+
P

M
j 6=i

jhhhyivvvj j
2

�EHHH;W log2
P

M
jhhhyivvvj j

2

= log2
P

M
+ EHHH log2 khhhik

2 + EHHH;W log2 j
~hhh
y

ivvvj j
2

= log2 P + EHHH;W log2 sin2( 6 (~hhhi; ĥhhi)) +O(1)

= � log2 P �
log2 e

M � 1

L

k=1

1

k
+O(1)

� log2 P �
1

M � 1
log2 L+O(1)

= 1�
�

M � 1
log2 P +O(1)

where we have used Lemma 3 to evaluate the expectation of the log-
arithm of the interference term. Plugging this bound in to (23) gives
m � M �

M�1
.



5058 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

To show m � M �

M�1
, we upper-bound the limit in (23) using

the fact that j~hhh
y

ivvvj j
2 � sin2(~hhhi; ĥhhi) for any i 6= j (from (12)) and

Jensen’s inequality

EHHH;W log2 1 +
P

M
j 6=i

khhhik
2j~hhh
y

ivvvj j
2

�EHHH;W log2 1 +
P

M
(M � 1)khhhik

2 sin2(~hhhi; ĥhhi)

� log2 1 + P (M � 1)E sin2(~hhhi; ĥhhi)

� log2 1 + P (M � 1)2�

= log2 1 + (M � 1)P (1� ) :

Thus, we have

lim
P!1

MEHHH;W log2 1+ P

M j 6=i jhhh
y
ivvvj j

2

log2 P
�M 1�

�

M � 1

which gives m � M �

M�1
.

APPENDIX V
PROOF OF LEMMA 4

Without loss of generality, consider i = 1 and j = 2, i.e., X12 =

j~hhh
y

1vvv2j
2. To prove the bound, we first condition on the quantizations of

users3 through M , i.e., ĥhh3; . . . ; ĥhhM , or equivalently, we condition on
their channel realizations. Since the beamforming vector vvv2 is a func-
tion of the quantizations of user 1 and users 3; . . . ;M , vvv2 is a deter-
ministic function of ĥhh1 due to the conditioning. Let V(wwwi) correspond
to the Voronoi region of quantization vector wwwi, i.e., the set of channel
directions ~hhh1 quantized to wwwi. Furthermore, let vvv(wwwi) be the beam-
forming vector for user 2 when ~hhh1 2 V(wwwi). The beamforming vector
is chosen exactly orthogonal to the quantization wwwi, but the interfer-
ence term X12 = j~hhh

y

1vvv2j
2 is small only if the actual channel direction

~hhh1, which is presumably close to the quantization vector wwwi, is also
nearly orthogonal to vvv2. To be more precise, the set of realizations in
V(wi) that correspond to X12 � x are the directions ~hhh1 in the set

V(wi)\ fsss : jvvv(wwwi)
y
sssj2 � xg:

The probability that X12 � x is therefore given by the area of the
union of all such regions, where the union is taken across theLVoronoi
regions

Pr(X12 � xj~hhh3; . . . ; ~hhhM)

=A

L

i=1

V(wwwi)\ fsss : ksssk = 1; jvvv(wwwi)
y
sssj2 � xg

�A

L

i=1

fsss : ksssk = 1; jvvv(wwwi)
y
sssj2 � xg

�

L

i=1

A fsss : ksssk = 1; jvvv(wwwi)
y
sssj2 � xg

where A(�) refers to the fraction of the area of the surface of the unit
sphere. Using the �(1;M�1) distribution it is straightforward to com-
pute

A fsss : ksssk = 1; jvvv(wwwi)
y
sssj2 � xg = 1� (1� x)M�1:

Therefore, we have Pr(X12 � xj~hhh3; . . . ; ~hhhM) � L(1� (1�x)M�1)
for all 0 � x � 1. Since this bound does not depend on the condi-
tioning, it holds unconditionally as well: Pr(X12 � x) � L(1� (1�
x)M�1). Combining this with Pr(X12 � x) � 1, we get the result.

APPENDIX VI
PROOF OF LEMMA 5

Since 0 � ~X � 1, loge ~X � 0, and thus

E[� loge
~X] =

1

0

Pr(� loge
~X � x)dx:

Denoting c = � loge 1� 1� 1
L

, we have

E[� loge
~X] =

1

0

Pr( ~X � e
�x)dx

= c+
1

c

L(1� (1� e
�x)M�1)dx: (24)

Evaluating the integral expression, we get

1

c

L(1� (1� e
�x)M�1)dx

(a)
=L

1

c

1�

M�1

k=0

M � 1

k
(�1)k+1e�xkdx

=L

M�1

k=1

M � 1

k
(�1)k

1

c

e
�xk

dx

(b)

�L

M�1

k=1

M � 1

k

1

c

e
�x
dx

=L

M�1

k=1

M � 1

k
e
�c (25)

where (a) follows from the binomial expansion and (b) holds because
e�x � e�kx for all k � 1, x � 0, and each of the terms in the new
sum is nonnegative. Plugging this expression into (24) and using the
finiteness of c, we clearly see that the expectation is finite.

To bound the multiplexing gain, first consider the constant c. Using
the basic property x � xp for all x � 0, p � 1 we have

1�
1

L
� 1�

1

L
:

With some simple arithmetic, this yields

c � loge L:

Next, let us upper-bound the second term in (24). Starting with the
upper bound given in (25) we have

1

c

L(1� (1� e
�x)M�1)dx

�L

M�1

k=1

M � 1

k
e
�c

=

M�1

k=1

M � 1

k
L 1� 1�

1

L
:
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Applying the convergent power series

(1 + x)q = 1 + qx+
q(q � 1)

2!
x2 + � � �

+
q(q � 1) . . . (q � k + 1)

k!
xk + � � �

[51] to (1 � 1=L)M�1 we have

1� 1�
1

L

=1� 1�
1

M � 1

1

L
+

1

2!

1

M � 1

2�M

M � 1

1

L

2
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=
1

M � 1

1

L
+ a2

1

L

2

+ a3
1

L

3
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where each of the constants a2; a3; . . . are nonnegative and easily ver-
ified to be less than unity. Thus, we have

L 1� 1�
1

L
=

1

M � 1
+ a2

1

L
+ a3

1

L

2
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�
1

M � 1
+

1

k=1

L�k

=
1

M � 1
+

1

L� 1
:

Plugging these upper bounds into (24) then gives

E[�loge
~X] � loge L+

1

M � 1
+

1

L� 1

M�1

k=1

M � 1

k
:

Since L = 2B = P�, the second term converges to a constant as P
and L go to infinity, and therefore,

lim
P!1

E[� loge
~X]

loge P
� �:
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On Space–Time Trellis Codes Achieving Optimal Diversity
Multiplexing Tradeoff

Rahul Vaze, Associate Member, IEEE, and
B. Sundar Rajan, Senior Member, IEEE

Abstract—Multiple antennas can be used for increasing the amount of
diversity (diversity gain) or increasing the data rate (the number of degrees
of freedom or spatial multiplexing gain) in wireless communication. As
quantified by Zheng and Tse, given a multiple-input–multiple-output
(MIMO) channel, both gains can, in fact, be simultaneously obtained, but
there is a fundamental tradeoff (called the Diversity-Multiplexing Gain
(DM-G) tradeoff) between how much of each type of gain, any coding
scheme can extract. Space–time codes (STCs) can be employed to make
use of these advantages offered by multiple antennas. Space–Time Trellis
Codes (STTCs) are known to have better bit error rate performance
than Space–Time Block Codes (STBCs), but with a penalty in decoding
complexity. Also, for STTCs, the frame length is assumed to be finite
and hence zeros are forced towards the end of the frame (called the
trailing zeros), inducing rate loss. In this correspondence, we derive an
upper bound on the DM-G tradeoff of full-rate STTCs with nonvanishing
determinant (NVD). Also, we show that the full-rate STTCs with NVD are
optimal under the DM-G tradeoff for any number of transmit and receive
antennas, neglecting the rate loss due to trailing zeros. Next, we give an
explicit generalized full-rate STTC construction for any number of states
of the trellis, which achieves the optimal DM-G tradeoff for any number
of transmit and receive antennas, neglecting the rate loss due to trailing
zeros.

Index Terms—Diversity-multiplexing tradeoff, multiple-input–multiple-
output (MIMO), space–time codes.

I. INTRODUCTION AND PRELIMINARIES

Consider the quasi-static Rayleigh-fading space–time channel with
quasi-static interval T , nt transmit and nr receive antennas. The (nr�
T ) received matrix Y is given by

Y = �HX +W (1)

where X is the transmitted codeword (nt � T ) drawn from a
space–time code (STC) X , H the (nr � nt) channel matrix and W
the (nr � T ) noise matrix. The entries of H andW are assumed to be
independent and identically distributed (i.i.d.), circularly symmetric
complex Gaussian N (0; 1) random variables. STCs are classified
into two categories, namely: space–time block codes (STBC) and
space–time trellis codes (STTC). Henceforth, we assume X to be
always STTC. The entries of X are drawn from a constellation S
whose size scales with signal-to-noise ratio (SNR) with � chosen to
ensure

E(k�Xk2F ) = T SNR:
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