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Abstract

In this paper we consider the problem of maximizing sum rate of a multiple-antenna Gaussian

broadcast channel. It was recently found that dirty paper coding is capacity achieving for this channel. In

order to achieve capacity, the optimal transmission policy(i.e. the optimal transmit covariance structure)

given the channel conditions and power constraint must be found. However, obtaining the optimal trans-

mission policy when employing dirty paper coding is a computationally complex non-convex problem.

We use duality to transform this problem into a well-structured convex multiple-access channel problem.

We exploit the structure of this problem and derive simple and fast iterative algorithms that provide

the optimum transmission policies for the multiple-accesschannel, which can easily be mapped to the

optimal broadcast channel policies.
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I. INTRODUCTION

There has been a great interest in characterizing and computing the capacity region of multiple-antenna

broadcast (downlink) channels in recent years. An achievable region for the multiple-antenna downlink

channel was found in [3], and this achievable region was shown to achieve the sum rate capacity in

[3], [10], [12], [16], and was more recently shown to achievethe full capacity region in [14]. Though

these results show that the general dirty paper coding strategy is optimal, one must still optimize over

the transmit covariance structure (i.e. how transmissionsover different antennas should be correlated) in

order to determine the optimal transmission policy and the corresponding sum rate capacity. Unlike the

single antenna broadcast channel, sum capacity is not in general achieved by transmitting to a single user.

Thus, the problem cannot be reduced to a point-to-point MIMOproblem, for which simple expressions

are known. Furthermore, the direct optimization for sum rate capacity is a computationally complex

non-convex problem. Therefore, obtaining the optimal rates and transmission policy is difficult1.

A duality technique presented in [7], [10] transforms the non-convex downlink problem into a convex

sum poweruplink (multiple-access channel, or MAC) problem, which is much easier to solve, from which

the optimal downlink covariance matrices can be found. Thus, in this paper we find efficient algorithms

to find the sum capacity of the uplink channel, i.e. to solve the following convex optimization problem:

max
{Qi}K

i=1
: Qi≥0,

P

K

i=1
Tr(Qi)≤P

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

. (1)

In this sum power MAC problem, the users in the system have a joint power constraint instead of

individual constraints as in the conventional MAC. As in thecase of the conventional MAC, there exist

standard interior point convex optimization algorithms [2] that solve (1). An interior point algorithm,

however, is considerably more complex than our algorithms and does not scale well when there are large

numbers of users. Recent work by Lan and Yu based on minimax optimization techniques appears to be

promising but suffers from much higher complexity than our algorithms [8]. A steepest-descent method

was proposed by Viswanathan, et. al. [13], and an alternative, dual decomposition based algorithm was

proposed by Yu in [15]. The complexity of these two algorithms is on the same order as the complexity of

the algorithms proposed here. However, we find our algorithmto converge more rapidly, and our algorithm

is also considerably more intuitive than either of these approaches. In this paper, we exploit the structure

1In the single transmit antenna broadcast channel, there is asimilar non-convex optimization problem. However, it is easily

seen that it is optimal to transmit with full power to only theuser with the strongest channel. Such a policy is, however, not

the optimal policy when the transmitter has multiple antennas.
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of the sum capacity problem to obtain simple iterative algorithms for calculating sum capacity2, i.e. for

computing (1). This algorithm is inspired by and is very similar to the iterative waterfilling algorithm for

the conventional individual power constraint MAC problem by Yu, Rhee, Boyd and Cioffi [17].

This paper is structured as follows. In the next section, thesystem model is presented. In Section

III, expressions for the sum capacity of the downlink and dual uplink channels are stated. In Section

IV, the basic iterative water-filling algorithm for the multiple-access channel is proposed and proven

to converge when there are only two receivers. In Sections VIand VII two modified versions of this

algorithm are proposed and shown to converge for any number of users. Complexity analyses of the

algorithms are presented in Section VIII, followed by numerical results and conclusions in Sections IX

and X, respectively.

II. SYSTEM MODEL

We consider aK user MIMO Gaussian broadcast channel (abbreviated as MIMO BC) where the

transmitter hasM antennas and each receiver hasN antennas3. The downlink channel is shown in

Figure 1 along with thedual uplink channel. The dual uplink channel is aK user multiple antenna

uplink channel (abbreviated as MIMO MAC) where each of the dual uplink channels is the conjugate

transpose of the corresponding downlink channel. The downlink and uplink channel are mathematically

described as:

yi = Hix + ni, i = 1, . . . ,K Downlink channel (2)

yMAC =
K
∑

i=1

H
†
ixi + n Dual uplink channel (3)

whereH1, H2, . . . ,HK are the channel matrices (withHi ∈ C
N×M ) of users 1 throughK respectively

on the downlink, the vectorx ∈ C
M×1 is the downlink transmitted signal, andx1, . . . ,xK (with xi ∈

C
N×1) are the transmitted signals in the uplink channel. This work applies only to the scenario where

the channel matrices are fixed and are all known to the transmitter and to each receiver. In fact, this is

the only scenario for which capacity results for the MIMO BC are known. The vectorsn1, . . . ,nK and

n refer to independent additive Gaussian noise with unit variance on each vector component. We assume

2To compute other points on the boundary of the capacity region (i.e. non sum-capacity rate vectors), the algorithms in either

[13] or [8] can be used

3We assume all receivers have the same number of antennas for simplicity. However, all algorithms easily generalize to the

scenario where each receiver can have a different number of antennas.
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n1

H1 + y1 x1 H
†
1

n2

H2 + y2 x2 H
†
2 n

x
...

... + yMAC

nk

HK + yK xK H
†
K

Fig. 1. System models of the MIMO BC(left) and the MIMO MAC (right) channels

there is a sum power constraint ofP in the MIMO BC (i.e.E[||x||2] ≤ P ) and in the MIMO MAC (i.e.
∑K

i=1 E[||xi||
2] ≤ P ). Though the computation of the sum capacity of the MIMO BC isof interest, we

work with the dual MAC, which is computationally much easierto solve, instead.

Notation: We use boldface to denote vectors and matrices. The function[·]K is defined as[x]K ,

(x − 1 mod K) + 1, i.e. [0]K = K, [1]K = 1, [K]K = K, and so forth.

III. SUM RATE CAPACITY

In [3], [10], [12], [16], the sum rate capacity of the MIMO BC (denoted asCBC(H1, . . . ,HK , P ))

was shown to be achievable by dirty-paper coding [4]. From these results, the sum rate capacity can be

written in terms of the following maximization:

CBC(H1, . . . ,HK , P ) = max
{Σi}K

i=1
: Σi≥0,

P

K

i=1
Tr(Σi)≤P

log
∣

∣

∣I + H1Σ1H
†
1

∣

∣

∣+ (4)
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∣

∣
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†
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∣
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∣

∣
I + H2Σ1H

†
2

∣

∣

∣

+ · · · + log

∣

∣

∣
I + HK(Σ1 + · · · + ΣK)H†

K

∣

∣

∣

∣

∣

∣
I + HK(Σ1 + · · · + ΣK−1)H

†
K

∣

∣

∣

.

The maximization is performed over downlink covariance matrices Σ1, . . . ,ΣK , each of which is a

M × M positive semi-definite matrix. In this paper we are interested in finding the covariance matrices

that achieve this maximum. It is easily seen that the objective (4) is not a concave function ofΣ1, . . . ,ΣK .

Thus, numerically finding the maximum is a non-trivial problem. However, in [10], aduality is shown to

exist between the uplink and downlink which establishes that the dirty paper rate region for the MIMO
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BC is equal to the capacity region of the dual MIMO MAC (described in (3)). This implies that the

sum capacity of the MIMO BC is equal to the sum capacity of the dual MIMO MAC (denoted as

CMAC(H1, . . . ,HK , P )), i.e.

CBC(H1, . . . ,HK , P ) = CMAC(H†
1, . . . ,H

†
K , P ). (5)

The sum rate capacity of the MIMO MAC is given by the followingexpression [10]:

CMAC(H†
1, . . . ,H

†
K , P ) = max

{Qi}K

i=1
: Qi≥0,

P

K

i=1
Tr(Qi)≤P

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

, (6)

where the maximization is performed over uplink covariancematricesQ1, . . . ,QK (Qi is an N × N

positive semi-definite matrix), subject to power constraint P . The objective in (6) is a concave function of

the covariance matrices. Furthermore, in [10, Equations 8-10], a transformation is provided (this mapping

is reproduced in Appendix I for convenience) that maps from uplink covariance matrices to downlink

covariance matrices (i.e. fromQ1, . . . ,QK to Σ1, . . . ,ΣK) that achieve the same rates and use the

same sum power. Therefore, finding the optimal uplink covariance matrices leads directly to the optimal

downlink covariance matrices.

In this paper, we develop specialized algorithms that efficiently compute (6). These algorithm converge,

and utilize the water-filling structure of the optimal solution, first identified for the individual power

constraint MAC in [17]. Note that the maximization in (6) is not guaranteed to have a unique solution,

though it seems that uniqueness holds nearly all channel realizations. See [17] for a discussion of this

same property for the individual power constraint MAC. Therefore, we are interested in finding any

maximizing solution to the optimization.

IV. I TERATIVE WATER-FILLING WITH INDIVIDUAL POWER CONSTRAINTS

The iterative water-filling algorithm for the conventionalMIMO MAC problem was obtained by Yu,

Rhee, Boyd, and Cioffi in [17]. This algorithm finds the sum capacity of a MIMO MAC with individual

power constraintsP1, . . . , PK on each user, which is equal to:

CMAC(H†
1, . . . ,H

†
K , P1, . . . , PK) = max

{Qi}K

i=1
: Qi≥0, Tr(Qi)≤Pi

log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

. (7)

This differs from (6) only in the power constraint structure. Notice that the objective is a concave function

of the covariance matrices, and that the constraints in (7) are separablebecause there is an individual trace

constraint on each covariance matrix. For such problems, itis generally sufficient to optimize with respect

to the first variable while holding all other variables constant, then optimize with respect to the second
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variable, etc., in order to reach a globally optimum point. This is referred to as the block-coordinate

ascent algorithm and convergence can be shown under relatively general conditions [1, Section 2.7]. If

we define the functionf(·) as

f(Q1, . . . ,QK) , log

∣

∣

∣

∣

∣

I +

K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

, (8)

then in the(n + 1)-th iteration of the block-coordinate ascent algorithm,

Q
(n+1)
i , arg max

Qi: Qi≥0, Tr(Qi)≤Pi

f(Q
(n)
1 , . . . ,Q

(n)
i−1,Qi,Q

(n)
i+1, . . . ,Q

(n)
K ) (9)

for i = [n]K andQ
(n+1)
i = Q

(n)
i for i 6= [n]K . Notice that only one of the covariances is updated in

each iteration.

The key to the iterative water-filling algorithm is noticingthat f(Q1, . . . ,QK) can be rewritten as:

f(Q1, . . . ,QK) = log

∣

∣

∣

∣

∣

∣

I +
∑

j 6=i

H
†
jQjHj + H

†
iQiHi

∣

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +
∑

j 6=i

H
†
jQjHj

∣

∣

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

∣

∣

I +



I +
∑

j 6=i

H
†
jQjHj





−1/2

H
†
iQiHi



I +
∑

j 6=i

H
†
jQjHj





−1/2
∣

∣

∣

∣

∣

∣

∣

for any i, where we have used the property|AB| = |A||B|. Therefore, the maximization in (9) is

equivalent to the calculation of the capacity of a point-to-point MIMO channel with channelGi =

Hi

(

I +
∑

j 6=i H
†
jQ

(n)
j Hj

)−1/2
:

Q
(n+1)
i = arg max

Qi: Qi≥0, Tr(Qi)≤Pi

log
∣

∣

∣I + G
†
iQiGi

∣

∣

∣ . (10)

It is well known that the capacity of a point-to-point MIMO channel is achieved by choosing the input

covariance along the eigenvectors of the channel matrix andby water-filling on the eigenvalues of the

channel matrix [9]. Thus,Q(n+1)
i should be chosen as awater-fill of the channelGi, i.e. the eigenvectors

of Q
(n+1)
i should equal the left eigenvectors ofGi, with the eigenvalues chosen by the water-filling

procedure.

At each step of the algorithm, exactly one user optimizes hiscovariance matrix while treating the

signals from all other users as noise. In the next step, the next user (in numerical order) optimizes his

covariance while treating all other signals, including theupdated covariance of the previous user, as

noise. This intuitively appealing algorithm can easily be shown to satisfy the conditions of [1, Section
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2.7] and thus provably converges. Furthermore, the optimization in each step of the algorithm simplifies

to water-filling over an effective channel, which is computationally efficient.

If we let Q∗
1, . . . ,Q

∗
K denote the optimal covariances, then optimality implies:

f(Q∗
1, . . . ,Q

∗
K) = max

Qi: Qi≥0,Tr(Qi)≤Pi

f(Q∗
1, . . . ,Q

∗
i−1,Qi,Q

∗
i+1, . . . ,Q

∗
K). (11)

for any i. Thus,Q∗
1 is a water-fill of the noise and the signals from all other users (i.e. is a waterfill

of the channelH1(I +
∑

j 6=1 H
†
jQ

∗
jHj)

−1/2), while Q∗
2 is simultaneously a water-fill of the noise and

the signals from all other users, and so forth. Thus, the sum capacity achieving covariance matrices

simultaneouslywater-fill each of their respective effective channels [17], with the water-filling levels (i.e.

the eigenvalues) of each user determined by the power constraintsPj . In the next section, we will see

that similar intuition describes the sum capacity achieving covariance matrices in the MIMO MAC when

there is a sum power constraint instead of individual power constraints.

V. SUM POWER ITERATIVE WATER-FILLING

In the previous section we described the iterative water-filling algorithm that computes the sum capacity

of the MIMO MAC subject to individual power constraints [17]. We are instead concerned with computing

the sum capacity, along with the corresponding optimal covariance matrices, of a MIMO BC. As stated

earlier, this is equivalent to computing the sum capacity ofa MIMO MAC subject to a sum power

constraint, i.e. computing:

CMAC(H†
1, . . . ,H

†
K , P ) = max

{Qi}K

i=1
: Qi≥0,

P

K

i=1
Tr(Qi)≤P

log

∣

∣

∣

∣

∣

I +
K
∑

i=1

H
†
iQiHi

∣

∣

∣

∣

∣

. (12)

If we let Q∗
1, . . . ,Q

∗
K denote a set of covariance matrices that achieve the above maximum, it is easy to

see that similar to the individual power constraint problem, each covariance must be a water-fill of the

noise and signals from all other users. More precisely, thismeans that for everyj, the eigenvectors ofQ∗
i

are aligned with the left eigenvectors ofHi

(

I +
∑

j 6=i H
†
jQ

∗
jHj

)−1/2
and that the eigenvalues ofQ∗

i

must satisfy the water-filling condition. However, since there is asumpower constraint on the covariances,

the water level of all users must be equal. This is akin to saying that no advantage will be gained by

transferring power from one user with a higher water-fillinglevel to another user with a lower water-

filling level. Note that this is different from the individual power constraint problem, where the water

level of each user was determined individually and could differ from user to user. In the individual power

constraint channel, since each user’s water-filling level was determined by his own power constraint, the

covariances of each user could be updated one at a time. With asum power constraint, however, we must

update all covariancessimultaneouslyto maintain a constant water-level.
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Motivated by the individual power algorithm, we propose thefollowing algorithm in which allK

covariances are simultaneously updated during each step, based on the covariance matrices from the

previous step. This is a natural extension of the per-user sequential update described in Section IV. At

each iteration step we generate an effective channel foreachuser based on the covariances (from the

previous step) of all other users. In order to maintain a common water-level, we simultaneously water-fill

across allK effective channels, i.e. we maximize the sum of rates on theK effective channels. Then-th

iteration of the algorithm is described by the following:

1) Generate effective channels

G
(n)
i = Hi



I +
∑

j 6=i

H
†
jQ

(n−1)
j Hj





−1/2

(13)

for i = 1, . . . ,K.

2) Treating these effective channels as parallel, non-interfering channels, obtain the new covariance

matrices{Q(n)
i }K

i=1 by water-filling with total powerP :

{Q
(n)
i }K

i=1 = arg max
{Qi}K

i=1
: Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log

∣

∣

∣

∣

I +
(

G
(n)
i

)†
QiG

(n)
i

∣

∣

∣

∣

.

This maximization is equivalent to water-filling the block diagonal channel with diagonals equal

to G
(n)
1 , . . . ,G

(n)
K . If the SVD of G(n)

i

(

G
(n)
i

)†
is written asG(n)

i

(

G
(n)
i

)†
= UiDiU

†
i with Ui

unitary andDi square and diagonal, then the updated covariance matrices are given by:

Q
(n)
i = UiΛiU

†
i (14)

whereΛi =
[

µI − (Di)
−1
]+

and the operation[A]+ denotes a component-wise maximum with

zero. Here the water-filling levelµ is chosen such that
∑K

i=1 Tr(Λi) = P .

We refer to this as theoriginal algorithm [6]. This simple and highly intuitive algorithm does in fact

converge to the sum rate capacity whenK = 2, as we show next:

Theorem 1:The sum power iterative water-filling algorithm converges to the sum rate capacity of the

MAC when K = 2.

Proof: In order to prove convergence of the algorithm forK = 2, consider the following related

optimization problem:

max
A1,A2≥0, B1,B2≥0, Tr(A1+A2)≤P, Tr(B1+B2)≤P

1

2
log
∣

∣

∣I + H
†
1A1H1 + H

†
2B2H2

∣

∣

∣

+
1

2
log
∣

∣

∣
I + H

†
1B1H1 + H

†
2A2H2

∣

∣

∣
. (15)
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We first show that the solutions to the original sum rate maximization problem in (12) and (15) are the

same. If we defineA1 = B1 = Q1 andA2 = B2 = Q2, we see that any sum rate achievable in (12)

is also achievable in the modified sum rate in (15). Furthermore, if we defineQ1 = 1
2(A1 + B1) and

Q2 = 1
2(A2 + B2), we have:

log
∣

∣

∣I + H
†
1Q1H1 + H

†
2Q2H2

∣

∣

∣ ≥

1

2
log
∣

∣

∣I + H
†
1A1H1 + H

†
2B2H2

∣

∣

∣+
1

2
log
∣

∣

∣I + H
†
1B1H1 + H

†
2A2H2

∣

∣

∣

due to the concavity oflog(det(·)). Since Tr(Q1) + Tr(Q2) = 1
2Tr(A1 + A2 + B1 + B2) ≤ P , any sum

rate achievable in (15) is also achievable in the original (12). Thus, every set of maximizing covariances

(A1,A2,B1,B2) map directly to a set of maximizing(Q1,Q2). Therefore, we can equivalently solve

(15) to find the uplink covariances that maximize the sum-rate expression in (12).

Now notice that the maximization in (15) has separable constraints on(A1,A2) and(B1,B2). Thus,

we can use the block coordinate ascent method in which we maximize with respect to(A1,A2) while

holding (B1,B2) fixed, then with respect to(B1,B2) while holding (A1,A2) fixed, and so on. The

maximization of (15) with respect to(A1,A2) can be written as:

max
A1,A2≥0, Tr(A1+A2)≤P

log
∣

∣

∣
I + G

†
1A1G1

∣

∣

∣
+ log

∣

∣

∣
I + G

†
2A2G2

∣

∣

∣
(16)

whereG1 = H1(I + H
†
2B2H2)

−1/2 andG2 = H2(I + H
†
1B1H1)

−1/2. Clearly, this is equivalent to the

iterative water-filling step described in the previous section where(B1,B2) play the role of the covariance

matrices from the previous step. Similarly, when maximizing with respect to(B1,B2), the covariances

(A1,A2) are the covariance matrices from the previous step. Therefore, performing the cyclic coordinate

ascent algorithm on (15) is equivalent to the sum power iterative water-filling algorithm described in

Section V.

Furthermore, notice that each iteration is equal to the calculation of the capacity of a point-to-point

(block-diagonal) MIMO channel. Water-filling is known to beoptimal in this setting, and in Appendix

II we show that the water-filling solution is the unique solution. Therefore, by [18, pg. 228] [1, Chapter

2.7], the block coordinate ascent algorithm converges because at each step of the algorithm there is a

unique maximizing solution. Thus, the iterative water-filling algorithm given in Section V converges to

the maximum sum rate whenK = 2.

However, rather surprisingly, this algorithm does not always converge to the optimum whenK > 2, and

the algorithm can even lead to a strict decrease in the objective function. In the following sections, we
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provide modified versions of this algorithm that do convergefor all K.

VI. M ODIFIED ALGORITHM

In this section we present a modified version of the sum power iterative water-filling algorithm and

prove that it converges to the sum capacity for any number of usersK. This modification is motivated

by the proof of convergence of the original algorithm forK = 2. In the proof of Theorem 1, a sum of

two log det functions, with four input covariances is considered instead of the originallog det function.

We then applied the provably convergent cyclic coordinate ascent algorithm, and saw that this algorithm

is in fact identical to the sum power iterative algorithm. When there are more than 2 users (i.e.K > 2)

we can consider a similar sum ofK log det functions, and again perform the cyclic coordinate ascent

algorithm to provably converge to the sum rate capacity. In this case, however, the cyclic coordinate ascent

algorithm is not identical to the original sum power iterative water-filling algorithm. It can, however, be

interpreted as the sum power iterative water-filling algorithm with a memory of the covariance matrices

generated in the previousK − 1 iterations, instead of just in the previous iteration.

For simplicity, let us consider theK = 3 scenario. Similar to the proof of Theorem 1, consider the

following maximization:

max
1

3
log
∣

∣

∣I + H
†
1A1H1 + H

†
2B2H2 + H

†
3C3H3

∣

∣

∣

+
1

3
log
∣

∣

∣I + H
†
1C1H1 + H

†
2A2H2 + H

†
3B3H3

∣

∣

∣

+
1

3
log
∣

∣

∣I + H
†
1B1H1 + H

†
2C2H2 + H

†
3A3H3

∣

∣

∣ (17)

subject to the constraintsAi ≥ 0, Bi ≥ 0, Ci ≥ 0 for i = 1, 2, 3, Tr(A1 +A2+A3) ≤ P , Tr(B1 +B2+

B3) ≤ P , and Tr(C1 +C2 +C3) ≤ P . By the same argument used for the two user case, any solutionto

the above maximization corresponds to a solution to the original optimization problem in (12). In order to

maximize (17), we can again use the cyclic coordinate ascentalgorithm. We first maximize with respect

to A , (A1,A2,A3), then with respect toB , (B1,B2,B3), then with respect toC , (C1,C2,C3),

and so forth. As before, convergence is guaranteed due to theuniqueness of the maximizing solution

in each step [1, Section 2.7]. In the two user case, the cycliccoordinate ascent method applied to the

modified optimization problem yields the same iterative water-filling algorithm proposed in Section V

where the effective user of each channel is based on the covariance matrices only from the previous step.

In general, however, the effective channel of each user depends on covariances which are up toK − 1

steps old.
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Update

Q(1) , argmaxQ f exp(Q,Q(−1),Q(0))

Q(2) , argmaxQ f exp(Q(1),Q,Q(0))

Q(3) , argmaxQ f exp(Q(1),Q(2),Q)Update

Update Q(4) , argmaxQ f exp(Q,Q(2),Q(3))

Update

B(0) = Q(−1)

A(4) = Q(4) C(4) = Q(3)B(4) = Q(2)

C(0) = Q(0)A(0) = Q(−2)

B(1) = Q(−1) C(1) = Q(0)A(1) = Q(1)

A(3) = Q(1) C(3) = Q(3)B(3) = Q(2)

B(2) = Q(2) C(2) = Q(0)A(2) = Q(1)

Fig. 2. Graphical representation of Algorithm 1

A graphical representation of the algorithm for three usersis shown in Fig. 2. HereA(n) refers to the

triplet of matrices(A1,A2,A3) after then-th iterate. Furthermore, the functionf exp(A,B,C) refers to

the objective function in (17). We begin by initializing allvariables to someA(0),B(0),C(0). In order

to develop a more general form that generalizes to arbitraryK, we also refer to these variables as

Q(−2),Q(−1),Q(0). Note that each of these variables refers to a triplet of covariance matrices. In step 1,

A is updated while holding variablesB andC constant, and we defineQ(1) to be the updated variable

A(1):

Q(1) , A(1) = arg max
Q: Qi≥0,

P

3

i=1
Tr(Qi)≤P

f exp
(

Q,B(0),C(0)
)

(18)

= arg max
Q: Qi≥0,

P

3

i=1
Tr(Qi)≤P

f exp
(

Q,Q(−1),Q(0)
)

(19)

In step 2, the matricesB are updated withQ(2) , B(2), and in step 3 the matricesC are updated with

Q(3) , C(3). The algorithm continues cyclically, i.e. in step 4A is again updated, and so forth. Notice

that Q(n) is always defined to be the set of matrices updated in then-th iteration.

In Appendix III we show that the following is a general formula for Q(n):

Q(n) = arg max
Q: Qi≥0,

P

K

i=1
Tr(Qi)≤P

f exp
(

Q,Q(n−K+1), . . . ,Q(n−1)
)

(20)

= arg max
Q: Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log

∣

∣

∣

∣

I +
(

G
(n)
i

)†
QiG

(n)
i

∣

∣

∣

∣

. (21)
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where the effective channel of Useri in the n-th step is:

G
(n)
i = Hi



I +

K−1
∑

j=1

H
†
[i+j]K

Q
(n−K+j)
[i+j]K

H[i+j]K





−1/2

(22)

where[x]K = mod(x−1,K)+1. Clearly, the previousK−1 states of the algorithm (i.e.Q(n−K+1), . . . ,Q(n−1))

must be kept in memory in order to generate these effective channels.

We now explicitly state the steps of Algorithm 1. The covariances are first initialized to scaled versions

of the identity4, i.e. Q(n)
j = P

KN I for j = 1, . . . ,K andn = −(K − 2), . . . , 0. The algorithm is almost

identical to the original sum power iterative algorithm, with the exception that the expression for each

effective channel now depends on covariance matrices generated in the previousK − 1 steps, instead of

just on the previous step:

1) Generate effective channels

G
(n)
i = Hi



I +
K−1
∑

j=1

H
†
[i+j]K

Q
(n−K+j)
[i+j]K

H[i+j]K





−1/2

(23)

for i = 1, . . . ,K.

2) Treating these effective channels as parallel, non-interfering channels, obtain the new covariance

matrices{Q(n)
i }K

i=1 by water-filling with total powerP :

{Q
(n)
i }K

i=1 = arg max
{Qi}K

i=1
: Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log
∣

∣

∣I + (G
(n)
i )†QiG

(n)
i

∣

∣

∣ .

We refer to this asAlgorithm 1. Next we prove convergence to the sum rate capacity:

Theorem 2:Algorithm 1 converges to the sum rate capacity for anyK.

Proof: Convergence is shown by noting that the algorithm is the cyclic coordinate ascent algorithm

applied to the functionf exp(·). Since there is a unique (water-filling) solution to the maximization in

step 2, the algorithm converges to the sum capacity of the channel for any number of usersK.5 More

precisely, convergence occurs in the objective of the expanded function:

lim
n→∞

f exp
(

Q(n−K+1), . . . ,Q(n)
)

= CMAC(H†
1, . . . ,H

†
K , P ) (24)

4The algorithm converges fromanystarting point, but for simplicity we have chosen to initialize using the identity covariance.

In Section IX we discuss the large advantage gained by using the original algorithm for a few iterations to generate a considerably

better starting point.

5Notice that the modified algorithm and the original algorithm in V are equivalent only forK = 2.
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S(2) , argmaxQ f exp(Q(1),Q,Q(1))Update

Q(1) , 1
3
S(1) + 2

3
Q(0)

S(1) , argmaxQ f exp(Q,Q(−1),Q(0))Update

Q(2) , 1
3
S(2) + 2

3
Q(1)Average

Average

Q(1)S(2)Q(1)

A(1) = Q(1)

B(0) = Q(0)

B(2) = Q(2)

C(2) = Q(1)B(1) = Q(1)

A(0) = Q(0)

S(1) Q(0) Q(0)

C(2) = Q(2)A(2) = Q(2)

C(0) = Q(0)

Fig. 3. Graphical representation of Algorithm 2 forK = 3

Convergence is also easily shown in the original objective function f(·) because the concavity of the

log(det()) function impliesf
(

1
K

∑n
l=n−K+1 Q

(l)
1 , . . . , 1

K

∑n
l=n−K+1 Q

(l)
K

)

≥ f exp
(

Q(n−K+1), . . . ,Q(n)
)

.

Thus, if we average over the covariances from the previousK iterations, we get:

lim
n→∞

f

(

1

K

n
∑

l=n−K+1

Q
(l)
1 , . . . ,

1

K

n
∑

l=n−K+1

Q
(l)
K

)

= CMAC(H†
1, . . . ,H

†
K , P ) (25)

Though the algorithm does converge quite rapidly, the required memory is a drawback for largeK.

In the next section we propose an additional modification to reduce the required memory.

VII. A LTERNATIVE ALGORITHM

In the previous section, we described a convergent algorithm that requires memory of the covariance

matrices generated in the previousK−1 iterations, i.e. ofK(K−1) matrices. In this section we propose a

simplified version of this algorithm that relies solely on the covariances from the previous iteration, but is

still provably convergent. The algorithm is based on the same basic iterative waterfilling step, but in each

iteration the updated covariances are a weighted sum of the old covariances and the covariances generated

by the iterative water-filling step. This algorithm can be viewed as Algorithm 1 with the insertion of an

averaging step after each iteration.
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A graphical representation of the new algorithm (referred to as Algorithm 2 herein) forK = 3 is

provided in Fig. 3. Notice that the initialization matricesare chosen to be all equal. As in algorithm

1, in the first stepA is updated to give the temporary variableS(1). In algorithm 1, we would assign

(A(1),B(1),C(1)) = (S(1),B(0),C(0)), and then continue by updatingB, and so forth. In algorithm 2,

however, before performing the next update (i.e. before updating B), the three variables areaveraged

to giveQ(1) , 1
3 (S(1)+Q(0)+Q(0)) = 1

3S
(1)+ 2

3Q
(0), and we set(A(1),B(1),C(1)) = (Q(1),Q(1),Q(1)).

Notice that this averaging step does not decrease the objective, i.e.f exp(Q(1),Q(1),Q(1)) ≥ f exp(S(1),Q(0),Q(0)),

as we show later. This is in fact crucial in establishing convergence of the algorithm.

After the averaging step, the update is again performed, butthis time onB. The algorithm continues in

this manner. It is easy to see that the averaging step essentially eliminates the need to retain the previous

K − 1 states in memory, and instead only the previous state (i.eQ(n−1)) needs to be stored. The general

equations describing the algorithm are

S(n) = argmax
Q

f exp
(

Q,Q(n−1), . . . ,Q(n−1)
)

(26)

Q(n) =
1

K
S(n) +

K − 1

K
Q(n−1). (27)

The maximization in (26) that definesS(n) is again solved by the waterfilling solution, but where the

effective channel depends only on the covariance matrices from the previous state, i.e.Q(n−1).

After initializing Q(0), the algorithm proceeds as follows6:

1) Generate effective channels for each user:

G
(n)
i = Hi



I +
∑

j 6=i

H
†
jQ

(n−1)
j Hj





−1/2

i = 1, . . . ,K. (28)

2) Treating these effective channels as parallel, non-interfering channels, obtain covariance matrices

{S
(n)
i }K

i=1 by water-filling with total powerP :

{S
(n)
i }K

i=1 = arg max
{Si}K

i=1
: Si≥0,

P

K

i=1
Tr(Si)≤P

K
∑

i=1

log

∣

∣

∣

∣

I +
(

G
(n)
i

)†
SiG

(n)
i

∣

∣

∣

∣

.

3) Compute the updated covariance matricesQ
(n)
i as:

Q
(n)
i =

1

K
S

(n)
i +

K − 1

K
Q

(n−1)
i i = 1, . . . ,K. (29)

Algorithm 2 (which first appeared in [11]) differs from the original algorithm only in the addition of the

third step.

6As discussed in Section IX, the original algorithm can be used to generate an excellent starting point for Algorithm 2.
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Theorem 3:Algorithm 2 converges to the sum rate capacity for anyK.

Proof: Convergence of the algorithm is proven by showing that algorithm 1 is equivalent to algorithm

2 with the insertion of a non-decreasing (in the objective) operation in between every iteration. The spacer

step theorem of [18, Chapter 7.11] asserts that if an algorithm satisfying the conditions of the global

convergence theorem [18, Chapter 6.6] is combined withany series of steps that do not decrease the

objective, then the combination of these two will still converge to the optimal. The cyclic coordinate

ascent algorithm does indeed satisfy the conditions of the global convergence theorem, and below we

prove that the averaging step does not decrease the objective. Thus, algorithm 2 converges7.

Consider then-iteration of the algorithm, i.e.

(Q(n−1), . . . ,Q(n−1)) → (S(n),Q(n−1), . . . ,Q(n−1)) (30)

→

(

1

K
S(n) +

K − 1

K
Q(n−1), . . . ,

1

K
S(n) +

K − 1

K
Q(n−1)

)

(31)

where the mapping in (30) is the cyclic coordinate ascent algorithm performed on the first set of matrices,

and the mapping in (31) is the averaging step. The first step isclearly identical to algorithm 1, while

the second step (i.e. the averaging step) has been added. We need only show that the averaging step is

non-decreasing, i.e.

f exp
(

S(n),Q(n−1), . . . ,Q(n−1)
)

≤ f exp

(

1

K
S(n) +

K − 1

K
Q(n−1), . . . ,

1

K
S(n) +

K − 1

K
Q(n−1)

)

.

(32)

Notice that we can rewrite the left side as:

f exp
(

S(n),Q(n−1), . . . ,Q(n−1)
)

=
1

K

K
∑

i=1

log

∣

∣

∣

∣

∣

∣

I + H
†
iS

(n)
i Hi +

∑

j 6=i

H
†
jQ

(n−1)
j Hj

∣

∣

∣

∣

∣

∣

≤ log

∣

∣

∣

∣

∣

∣

1

K

K
∑

i=1



I + H
†
iS

(n)
i Hi +

∑

j 6=i

H
†
jQ

(n−1)
j Hj





∣

∣

∣

∣

∣

∣

= log

∣

∣

∣

∣

∣

∣

I +

K
∑

j=1

H
†
j

(

1

K
S

(n)
j +

K − 1

K
Q

(n−1)
j

)

Hj

∣

∣

∣

∣

∣

∣

= f exp

(

1

K
S(n) +

K − 1

K
Q(n−1), . . . ,

1

K
S(n) +

K − 1

K
Q(n−1)

)

where the inequality follows from the concavity of thelog | · | function. Since the averaging step is

non-decreasing, the algorithm converges. More precisely,this meansf exp
(

Q(n), . . . ,Q(n)
)

converges to

7There is also a technical condition regarding compactness of the set with larger objective than the objective evaluatedfor

the initialization matrices that is trivially satisfied dueto the properties of Euclidean space.
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the sum capacity. Since this quantity is equal tof
(

Q(n)
)

, we have

lim
n→∞

f
(

Q(n)
)

= CMAC(H†
1, . . . ,H

†
K , P ) (33)

VIII. C OMPLEXITY ANALYSIS

In this section we provide complexity analyses of the three proposed algorithms and other algorithms

in literature. Each of the three proposed algorithms here have complexity that increaseslinearly with

K, the number of users. This is an extremely desirable property when considering systems with large

numbers of users (i.e.50 or 100 users). The linear complexity of our algorithm is quite easyto see if

one goes through the basic steps of the algorithm. For simplicity, we consider Algorithm 1, which is the

most complex of the algorithms. Calculating the effective channels in step 1 requires calculating the total

interference seen by each user (i.e. a term of the form of|I +
∑

j 6=i H
†
iQiHi|). A running sum of such

a term can be maintained, such that calculating the effective channel of each user requires only a finite

number of subtractions and additions. The waterfilling operation in step 2 can also be performed in linear

time by taking the SVD of each of the effective channels and then waterfilling. It is important not to

perform a standard waterfilling operation on the block diagonal channel, because the size of the involved

matrices grow withK. In general, the key idea behind the linear complexity of ouralgorithm is that the

entire input space is never considered (i.e. onlyN ×N andM ×M matrices, and never matrices whose

size is a function ofK, are considered). This, however, is not true of general optimization methods which

do not take advantage of the structure of the sum capacity problem.

Standard interior point methods have complexity that is cubic with respect to the dimensionality of

the input space (i.e. with respect toK, the number of users), due to the complexity of the inner Newton

iterations [2]. The minimax based approach in [8] also has complexity that is cubic inK because matrices

whose size is a function ofK are inverted in each step. For very small problems, this is not significant,

but for even reasonable values ofK (i.e. K = 10 or K = 20) this increase in complexity makes such

methods computationally prohibitive.

The other proposed specialized algorithms [13] [15] are also linear in complexity (inK). However, the

steepest descent algorithm proposed in [13] requires a linesearch in each step, which does not increase

the complexity order but does significantly increase run time. The dual decomposition algorithm proposed

in [15] requires an inner optimization to be performed within each iteration (i.e. user-by-user iterative

waterfilling [17] with a fixed water level, instead of individual power constraints, must be performed
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Fig. 5. Algorithm comparison for a convergent scenario

repeatedly), which significantly increases run time. Our sum power iterative waterfilling algorithms, on

the other hand, do not require a line search or an inner optimization within each iteration, thus leading to

a faster run time. In addition, we find the iterative waterfilling algorithms to converge faster than the other

linear complexity algorithms for almost all channel realizations. Some numerical results and discussion

of this is presented in the next section.
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IX. N UMERICAL RESULTS

In this section we provide some numerical results to show thebehavior of the three algorithms. In

Figure 4, a plot of sum rate vs. iteration number is provided for a 10 user channel with 4 transmit and 4

receive antennas. In this example, the original algorithm does not converge and can be seen to oscillate

between two sub-optimal points. Algorithms 1 and 2 do converge, however, as guaranteed by Theorems

2 and 3. In general, it is not difficult to randomly generate channels for which the original algorithm

does not converge and instead oscillates between sub-optimal points. This divergence occurs because

not only can the original algorithm lead to a decrease in the sum rate, but additionally there appear to

exist sub-optimal points between which the original algorithm can oscillate, i.e. point 1 is generated by

iteratively waterfilling from point 2, and vice versa.

In Fig. 5 the same plot is shown for a different channel (with the same system parameters as in Fig.

4: K = 10, M = N = 4) in which the original algorithm does in fact converge. Notice that the original

algorithm performs best, followed by Algorithm 1, and then Algorithm 2. The same trend is seen in Figure

6, which plots the error in capacity. Additionally, notice that all three algorithms converge linearly, as

expected for this class of algorithms. Though these plots are only for a single instantiation of channels,

the same ordering has always occurred, i.e. the original algorithm performs best (in situations where it

converges) followed by Algorithm 1 and then Algorithm 2.

The fact that the original algorithm converges faster than the modified algorithms is intuitively not

surprising, because the original algorithm updates matrices at a much faster rate than either of the modified
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Fig. 7. Comparison of linear complexity algorithms

versions of the algorithm. In Algorithm 1, there areK covariances for each user (corresponding to the

K previous states) that are averaged to yield the set of covariances that converge to the optimal. The

most recently updated covariances therefore make up only a fraction 1/K of the average, and thus

the algorithm moves relatively slowly. In Algorithm 2, the updated covariances are very similar to the

covariances from the previous state, as the updated covariances are equal to(K−1)/K times the previous

state’s covariances plus only a factor of1/K times the covariances generated by the iterative waterfilling

step. Thus, it should be intuitively clear that in situations where the original algorithm actually converges,

convergence is much faster for the original algorithm than for either of the modified algorithms. From

the plot it is clear that the performance difference betweenthe original algorithm and Algorithms 1 and

2 is quite significant. At the end of this section, however, wediscuss how the original algorithm can

be combined with either Algorithm 1 or 2 to improve performance considerably while still maintaining

guaranteed convergence. Of the two modified algorithms, Algorithm 1 is almost always seen to outperform

Algorithm 2. However, there does not appear to be an intuitive explanation for this behavior.

In Figure 7(a) sum rate is plotted for the three iterative waterfilling algorithms (original, Algorithm

1, and Algorithm 2), the steepest descent method [13], and the dual decomposition method [15], for a

channel withK = 10, M = 10, andN = 1. The three iterative waterfilling algorithms perform nearly

identically for this channel, and three curves are in fact superimposed on one and other in the figure.



TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY, 2005 20

Furthermore, the iterative waterfilling algorithms converge more rapidly than either of the alternative

methods. The iterative waterfilling algorithms outperformthe other algorithms in many scenarios, and

the gap is particularly large when the number of transmit antennas (M ) and users (K) are large. It should

be noted that there are certain situations where the steepest descent and dual decomposition algorithms

outperform the iterative waterfilling algorithm, in particular when the number of users is much larger than

the number of antennas. Figure 7(b) contains a convergence plot of a 50 user system withM = 5 and

N = 1. Algorithm 1 converges rather slowly precisely because of the large number of users (i.e. because

the covariances can only change at approximately a rate of1/K in each iteration, as discussed earlier).

Notice that both the steepest descent and dual decomposition algorithms converge faster. However, the

results for ahybrid algorithm are also plotted here (referred to as “Original + Algorithm 2”). In this

hybrid algorithm, the original iterative waterfilling algorithm is performed for the first five iterations,

and then Algorithm 2 is used for all subsequent iterations. The original algorithm is essentially used to

generate a good starting point for Algorithm 2. This hybrid algorithm converges, because the original

algorithm is only used a finite number of times, and is seen to outperform any of the other alternatives.

In fact, we find that the combination of the original algorithm with either Algorithm 1 or 2 converges

extremely rapidly to the optimum and outperforms the alternative linear complexity approaches in the

very large majority of scenarios, i.e. for any number of users and antennas. This is true even for channels

for which the original algorithm itself does not converge, because running the original algorithm for a

few iterations still provides an excellent starting point.

X. CONCLUSIONS

In this paper we proposed two algorithms that find the sum capacity achieving transmission strategies

for the multiple antenna broadcast channel. We use the fact that the Gaussian broadcast and multiple-

access channels are duals in the sense that their capacity regions, and therefore their sum capacities,

are equal. These algorithms compute the sum capacity achieving strategy for the dual multiple-access

channel, which can easily be converted to the equivalent optimal strategies for the broadcast channel. The

algorithms exploit the inherent structure of the multiple-access channel and employ a simple iterative

water-filling procedure that provably converges to the optimum. The two algorithms are extremely similar,

as both are based on the cyclic coordinate ascent and use the single-user waterfilling procedure in each

iteration, but they offer a simple tradeoff between performance and required memory. The convergence

speed, low complexity, and simplicity make the iterative waterfilling algorithms extremely attractive

methods to find the sum capacity of the multiple antenna broadcast channel.
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APPENDIX I

MAC-BC TRANSFORMATION

In this appendix, we restate the mapping from uplink covariance matrices to downlink matrices. Given

uplink covariancesQ1, . . . ,QK , the transformation in [10, Equations 8-10] outputs downlink covariance

matricesΣ1, . . . ,ΣK that achieve the same rates (on a user-by-user basis, and thus also in terms of sum

rate) using the same sum power, i.e. with
∑K

i=1 Tr(Qi) =
∑K

i=1 Tr(Σi). For convenience, we first define

the following two quantities:

Ai , I + Hi

(

i−1
∑

l=1

Σl

)

H
†
i , Bi , I +

K
∑

l=i+1

H
†
lQlHl (34)

for i = 1, . . . ,K. Furthermore, we write the SVD decomposition ofB
−1/2
i H

†
iA

−1/2
i asB−1/2

i H
†
iA

−1/2
i =

FiDiG
†
i , whereDi is a square and diagonal matrix8. Then, the equivalent downlink covariance matrices

can be computed via the following transformation:

Σi = B
−1/2
i FiG

†
iA

1/2
i QiA

1/2
i GiF

†
iB

−1/2
i , (35)

beginning withi = 1. See [10] for a derivation and more detail.

APPENDIX II

UNIQUENESS OFWATER-FILLING SOLUTION

In this appendix we show there is a unique solution to the following maximization:

max
Q≥0, Tr(Q)≤P

log
∣

∣

∣I + HQH†
∣

∣

∣ (36)

for any non-zeroH ∈ C
N×M for arbitrary M,N . This proof is identical to the proof of optimality of

water-filling in [9, Section 3.2], with the addition of a simple proof of uniqueness.

SinceH†H ∈ C
M×M is Hermitian and positive semi-definite, we can diagonalizeit and writeH†H =

UDU† whereU ∈ C
M×M is unitary andD ∈ R

M×M is diagonal with non-negative entries. Since

the ordering of the columns ofU and the entries ofD are arbitrary and becauseD must have at

least one strictly positive entry (becauseH is not the zero matrix), for simplicity we assumeDii > 0

for i = 1, . . . , L and Dii = 0 for i = L + 1, . . . ,M for some 1 ≤ L ≤ M . Using the identity

|I + AB| = |I + BA|, we can rewrite the objective function in (36) as:

log
∣

∣

∣
I + HQH†

∣

∣

∣
= log

∣

∣

∣
I + QH†H

∣

∣

∣
= log

∣

∣

∣
I + QUDU†

∣

∣

∣
= log

∣

∣

∣
I + U†QUD

∣

∣

∣
. (37)

8Note that the standard SVD command in MATLAB does not return asquare and diagonalDi. This is accomplished by using

the “0” option in the SVD command in MATLAB, and is referred toas the “economy size” decomposition.
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If we defineS , U†QU, then Q = USU†. Since Tr(AB) = Tr(BA) and U is unitary, we have

Tr(S) = Tr(U†QU) = Tr(QUU†) = Tr(Q). Furthermore,S ≥ 0 if and only if Q ≥ 0. Therefore, the

maximization can equivalently be carried out overS, i.e.:

max
S≥0, Tr(S)≤P

log |I + SD| . (38)

In addition, each solution to (36) corresponds to a different solution of (38) via the invertible mapping

S = U†QU. Thus, if the maximization in (36) has multiple solutions, the maximization in (38) must

also have multiple solutions. Therefore, it is sufficient toshow that (38) has a unique solution, which we

prove next.

First we show by contradiction that any optimalS must satisfySij = 0 for all i, j > L. Consider

an S ≥ 0 with Sij 6= 0 for some i > L and j > L. Since |Sij | ≤
√

SiiSjj for any S ≥ 0, this

implies Sii > 0 and Sjj > 0, i.e. at least one diagonal entry ofS is strictly positive below theL-th

row/column. Using Hadamard’s inequality [5] and the fact that Dii = 0 for i > L, we have|I + SD| ≤
∏M

i=1(1+SiiDii) =
∏L

i=1(1+SiiDii). We now construct another matrixS′ that achieves a strictly larger

objective thanS. We defineS′ to be diagonal with

S′
ii =



























S11 +
∑M

i=L+1 Sii i = 1

Sii i = 2, . . . , L

0 i = L + 1, . . . ,M

(39)

Clearly S′ ≥ 0 and Tr(S′) =
∑L

i=1 S′
ii = S11 +

∑M
i=L+1 Sii +

∑L
i=2 Sii = Tr(S). SinceS′ is diagonal,

the matrixS′D is diagonal and we havelog |I + S′D| = log
∏L

i=1(1+S′
iiDii) > log

∏L
i=1(1+SiiDii) ≥

log |I + SD|, where the strict inequality is due to the fact thatS′
11 > S11 andD11 > 0. Therefore, the

optimal S must satisfySij = 0 for all i, j > L.

Next we show by contradiction that any optimalS must also be diagonal. Consider anyS ≥ 0 that

satisfies the above condition (Sij = 0 for all i, j > L) but is not diagonal, i.e.Skj 6= 0 for somek 6= j

andk, j ≤ L. SinceD is diagonal andDii > 0 for i = 1, . . . , L, the matrixSD is not diagonal because

(SD)kj = SkjDjj 6= 0. Since Hadamard’s inequality holds with equality only for diagonal matrices,

we havelog |I + SD| < log
∏L

i=1(1 + SiiDii). Let us define a diagonal matrixS′ with S′
ii = Sii for

i = 1, . . . ,M . Clearly Tr(S′) = Tr(S) andS′ ≥ 0. SinceS′ is diagonal, the matrixS′D is diagonal and

thus log |I + S′D| = log
∏L

i=1(1 + SiiDii) > log |I + SD|. Therefore, the optimalS must be diagonal,

as well as satisfySij = 0 for i, j > L.

Therefore, in order to findall solutionsto (38), it is sufficient to only consider the class of diagonal,
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positive semi-definite matricesS that satisfySij = 0 for all i, j > L and Tr(S) ≤ P . The positive semi-

definite constraint is equivalent toSii ≥ 0 for i = 1, . . . , L, and the trace constraint gives
∑L

i=1 Sii ≤ P .

Sincelog |I + S′D| = log
∏L

i=1(1+S′
iiDii) for this class of matrices, we need only consider the following

maximization:

max
{Sii}L

i=1
: Sii≥0,

P

L

i=1
Sii≤P

L
∑

i=1

log(1 + SiiDii). (40)

SinceDii > 0 for i = 1, . . . , L, the objective in (40) is a strictly concave function, and thus has a unique

maximum. Thus, (38) has a unique maximum, which implies that(36) also has a unique maximum.

APPENDIX III

DERIVATION OF ALGORITHM 1

In this section we derive the general form of Algorithm 1 for an arbitrary number of users. In order

to solve the original sum rate capacity maximization in (12), we consider an alternative maximization:

max
S(1),...,S(K)

f exp (S(1), . . . ,S(K)) (41)

where we defineS(i) , (S(i)1, . . . ,S(i)K) for i = 1, . . . ,K with S(i)j ∈ C
N×N , and the maximization

is performed subject to the constraintsS(i)j ≥ 0 for all i, j and
∑K

j=1 Tr(S(i)j) ≤ P for i = 1, . . . ,K.

The functionf exp(·) is defined as:

f exp (S(1), . . . ,S(K)) =
1

K

K
∑

i=1

log

∣

∣

∣

∣

∣

∣

I +

K
∑

j=1

H
†
jS([j − i + 1]K)jHj

∣

∣

∣

∣

∣

∣

. (42)

In the notation used in Section VI, we would haveA = S(1), B = S(2), C = S(3). As discussed

earlier, every solution to the original sum rate maximization problem in (12) corresponds to a solution

to (41), and vice versa. Furthermore, the cyclic coordinateascent algorithm can be used to maximize

(41) due to the separability of the constraints onS(1), . . . ,S(K). If we let {S(i)(n)}K
i=1 denote then-th

iteration of the cyclic coordinate ascent algorithm, then the following holds:

S(l)(n) =











argmaxS f exp
(

S(1)(n−1), . . . ,S(m − 1)(n−1),S,S(m + 1)(n−1), . . . ,S(K)(n−1)
)

l = m

S(l)(n−1) l 6= m

(43)

for l = 1, . . . ,K, wherem = [n]K . For eachn, we defineQ(n) to be the updated matrices in that

iteration:

Q(n) , S(m)(n) (44)

= argmax
S

f exp
(

S(1)(n−1), . . . ,S(m − 1)(n−1),S,S(m + 1)(n−1), . . . ,S(K)(n−1)
)

(45)

= argmax
S

f exp
(

S,S(m + 1)(n−1), . . . ,S(K)(n−1),S(1)(n−1), . . . ,S(m − 1)(n−1)
)

(46)
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where in the final step we used the fact that

f exp (S(1), . . . ,S(K)) = f exp (S(l), . . . ,S(K),S(1), . . . ,S(l − 1)) (47)

for any l due to the circular structure off exp and the uniqueness of the waterfilling solution to (46).

Plugging in recursively forQ(n) for all n, we get:

Q(n) = argmax
Q

f exp
(

Q,Q(n−K+1), . . . ,Q(n−1)
)

(48)

= arg max
Q: Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log

∣

∣

∣

∣

∣

∣

I + H
†
iQiHi +

K−1
∑

j=1

H
†
[i+j]K

Q
(n−K+j)
[i+j]K

H[i+j]K

∣

∣

∣

∣

∣

∣

(49)

= arg max
Q: Qi≥0,

P

K

i=1
Tr(Qi)≤P

K
∑

i=1

log

∣

∣

∣

∣

I +
(

G
(n)
i

)†
QiG

(n)
i

∣

∣

∣

∣

. (50)

The final maximization is equivalent to waterfilling over effective channelsGj , given by:

G
(n)
i = Hi



I +

K−1
∑

j=1

H
†
[i+j]K

Q
(n−K+j)
[i+j]K

H[i+j]K





−1/2

(51)

for i = 1, . . . ,K.
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