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Abstract
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. INTRODUCTION

There has been a great interest in characterizing and cargghe capacity region of multiple-antenna
broadcast (downlink) channels in recent years. An achlevagion for the multiple-antenna downlink
channel was found in [3], and this achievable region was shtawachieve the sum rate capacity in
[3], [10], [12], [16], and was more recently shown to achig¢kie full capacity region in [14]. Though
these results show that the general dirty paper codingegiydas optimal, one must still optimize over
the transmit covariance structure (i.e. how transmissawes different antennas should be correlated) in
order to determine the optimal transmission policy and thieesponding sum rate capacity. Unlike the
single antenna broadcast channel, sum capacity is not ierglesichieved by transmitting to a single user.
Thus, the problem cannot be reduced to a point-to-point MIp@blem, for which simple expressions
are known. Furthermore, the direct optimization for sume reapacity is a computationally complex
non-convex problem. Therefore, obtaining the optimalgatad transmission policy is diffictit

A duality technique presented in [7], [10] transforms the&+onvex downlink problem into a convex
sum poweruplink (multiple-access channel, or MAC) problem, which is mucsiesto solve, from which
the optimal downlink covariance matrices can be found. Thushis paper we find efficient algorithms
to find the sum capacity of the uplink channel, i.e. to sohe fililowing convex optimization problem:

K
I+ HIQH,.

i=1

(1)

max log
{QiHS:: Qiz0, XL, Tr(Qq)<P

In this sum power MAC problem, the users in the system haverd pwer constraint instead of
individual constraints as in the conventional MAC. As in ttese of the conventional MAC, there exist
standard interior point convex optimization algorithmg {Rat solve (1). An interior point algorithm,
however, is considerably more complex than our algorithnisdoes not scale well when there are large
numbers of users. Recent work by Lan and Yu based on minimamiagtion techniques appears to be
promising but suffers from much higher complexity than olgodathms [8]. A steepest-descent method
was proposed by Viswanathan, et. al. [13], and an altematival decomposition based algorithm was
proposed by Yu in [15]. The complexity of these two algorithimon the same order as the complexity of
the algorithms proposed here. However, we find our algorithoonverge more rapidly, and our algorithm

is also considerably more intuitive than either of theseraaghes. In this paper, we exploit the structure

In the single transmit antenna broadcast channel, theresisidar non-convex optimization problem. However, it issida
seen that it is optimal to transmit with full power to only theer with the strongest channel. Such a policy is, howewr, n
the optimal policy when the transmitter has multiple antenn
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of the sum capacity problem to obtain simple iterative athors for calculating sum capacttyi.e. for
computing (1). This algorithm is inspired by and is very $anto the iterative waterfilling algorithm for
the conventional individual power constraint MAC problem Yu, Rhee, Boyd and Cioffi [17].

This paper is structured as follows. In the next section, dgtem model is presented. In Section
lll, expressions for the sum capacity of the downlink andldygink channels are stated. In Section
IV, the basic iterative water-filling algorithm for the miplie-access channel is proposed and proven
to converge when there are only two receivers. In Sectionand VIl two modified versions of this
algorithm are proposed and shown to converge for any numbesers. Complexity analyses of the
algorithms are presented in Section VI, followed by nuitarresults and conclusions in Sections IX

and X, respectively.

I[l. SYSTEM MODEL

We consider aK user MIMO Gaussian broadcast channel (abbreviated as MIMZ) Bhere the
transmitter has) antennas and each receiver hiisantennas The downlink channel is shown in
Figure 1 along with thedual uplink channel. The dual uplink channel isf& user multiple antenna
uplink channel (abbreviated as MIMO MAC) where each of thaldwplink channels is the conjugate
transpose of the corresponding downlink channel. The dawrnd uplink channel are mathematically

described as:

yi = Hix+n;, i=1...,K Downlink channel (2)
K
Ymac = Z Hjxi +n Dual uplink channel 3)
i=1
whereH, Hy, ..., Hx are the channel matrices (wili; € CV*M) of users 1 throughi' respectively
on the downlink, the vectox € CM*! is the downlink transmitted signal, and, ...,xx (with x; €

CN>1) are the transmitted signals in the uplink channel. Thiskwaguplies only to the scenario where
the channel matrices are fixed and are all known to the tratenaind to each receiver. In fact, this is
the only scenario for which capacity results for the MIMO Bf@ &nown. The vectoray, ..., ng and

n refer to independent additive Gaussian noise with unitavené on each vector component. We assume

2To compute other points on the boundary of the capacity rejie. non sum-capacity rate vectors), the algorithms tineei
[13] or [8] can be used
3We assume all receivers have the same number of antennaisnfaicity. However, all algorithms easily generalize teeth

scenario where each receiver can have a different numbantefas.
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Fig. 1. System models of the MIMO BC(left) and the MIMO MACdhit) channels

there is a sum power constraint Bfin the MIMO BC (i.e. E[||x||?] < P) and in the MIMO MAC (i.e.
Zfil E[||x:]|?] < P). Though the computation of the sum capacity of the MIMO B®fisnterest, we
work with the dual MAC, which is computationally much eadiersolve, instead.

A

Notation: We use boldface to denote vectors and matrices. The funéiignis defined agz]x =

(r—1modK)+1,ie [0lx =K, [1]lx =1, [K]x = K, and so forth.

I1l. Sum RATE CAPACITY

In [3], [10], [12], [16], the sum rate capacity of the MIMO B@sdnoted a<pc(Hy,...,Hg, P))
was shown to be achievable by dirty-paper coding [4]. Froesé¢hresults, the sum rate capacity can be

written in terms of the following maximization:

CBC(HL...,HK,P) = max ]og‘I+H12 Hl‘ + (4)
{ZE: 2,20, K, Tr(Z)<
‘I+H2 31+ X)) HT‘ ‘I+HK(21+”‘+EK)HH

log +-o+log

(I+H221H ( ‘I—l—HK(El—F"'—FzK—I)H}{“
The maximization is performed over downlink covariance moas X4,...,Xk, each of which is a
M x M positive semi-definite matrix. In this paper we are intezdsh finding the covariance matrices
that achieve this maximum. It is easily seen that the obje¢#t) is not a concave function &f, ..., X k.
Thus, numerically finding the maximum is a non-trivial pretol. However, in [10], auality is shown to

exist between the uplink and downlink which establishes the dirty paper rate region for the MIMO
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BC is equal to the capacity region of the dual MIMO MAC (debed in (3)). This implies that the
sum capacity of the MIMO BC is equal to the sum capacity of thaldMIMO MAC (denoted as
Cymac(Hy, ..., Hg, P)), i.e.

CBC(H1>"'>HK>P) :CMAC(HL...,H}{,P). (5)

The sum rate capacity of the MIMO MAC is given by the followiegpression [10]:

K
Cuac(HI, ... HI. P) = max log I+ HIQH,|, 6
mac(Hy o P) s 9ot e niquer g ; i QiH; (6)
where the maximization is performed over uplink covariant@ricesQg,...,Qx (Q; isan N x N

positive semi-definite matrix), subject to power constrdin The objective in (6) is a concave function of
the covariance matrices. Furthermore, in [10, Equatiof8]8a transformation is provided (this mapping
is reproduced in Appendix | for convenience) that maps frgetink covariance matrices to downlink
covariance matrices (i.e. fro®q,..., Qg to Xq,...,Xg) that achieve the same rates and use the
same sum power. Therefore, finding the optimal uplink cararé matrices leads directly to the optimal
downlink covariance matrices.

In this paper, we develop specialized algorithms that effity compute (6). These algorithm converge,
and utilize the water-filling structure of the optimal sdadum, first identified for the individual power
constraint MAC in [17]. Note that the maximization in (6) istrguaranteed to have a unique solution,
though it seems that uniqueness holds nearly all channktatans. See [17] for a discussion of this
same property for the individual power constraint MAC. Téfere, we are interested in finding any

maximizing solution to the optimization.

IV. I TERATIVE WATER-FILLING WITH INDIVIDUAL POWER CONSTRAINTS
The iterative water-filling algorithm for the conventiondIMO MAC problem was obtained by Yu,
Rhee, Boyd, and Cioffi in [17]. This algorithm finds the sum acify of a MIMO MAC with individual
power constraintd?, ..., Px on each user, which is equal to:

K
I+ HIQH,.

i=1

Cynac(HL,... HI P, Pg) = log (7)

max
{Qi}E: Qi>0, T(Q:)<P;
This differs from (6) only in the power constraint structuliotice that the objective is a concave function
of the covariance matrices, and that the constraints inré&’3eparablédbecause there is an individual trace
constraint on each covariance matrix. For such problensgénerally sufficient to optimize with respect

to the first variable while holding all other variables camt then optimize with respect to the second
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variable, etc., in order to reach a globally optimum pointisTis referred to as the block-coordinate
ascent algorithm and convergence can be shown under eatieneral conditions [1, Section 2.7]. If

we define the functiorf(-) as

K
£(Qu,....Qk) 2log [T+ > HIQH;|, 8)
i=1
then in the(n + 1)-th iteration of the block-coordinate ascent algorithm,
Q§"+1) é arg max f(Q§N)7 ce Qgﬁ)la Qi7 Qgi)p cey Qg?)) (9)

Qi Qi>0, Tr(Q:)<P;
for i = [n]x and QE"H) = QE") for i # [n]x. Notice that only one of the covariances is updated in
each iteration.

The key to the iterative water-filling algorithm is noticitigat f(Qg, ..., Qx) can be rewritten as:

f(Qi,...,Qg) = logI+Y HIQH;+H[QH,
J#i

= log|I+) HIQ;H,| +
i#i
—1/2 -1/2
log [T+ 1+ HIQ,H, HIQH, 1+ HIQ;H,
JF# J#

for any i, where we have used the propeft&B| = |A||B|. Therefore, the maximization in (9) is

equivalent to the calculation of the capacity of a poinptont MIMO channel with channeG; =
" —1/2

(n+1) _ ;
“ ng* Q:20, MQ)<p GQ (10)

It is well known that the capacity of a point-to-point MIMO ahnel is achieved by choosing the input
covariance along the eigenvectors of the channel matrixkgndiater-filling on the eigenvalues of the
channel matrix [9]. ThusQE"H) should be chosen asveater-fill of the channe(s,, i.e. the eigenvectors
of QZ(.”“) should equal the left eigenvectors Gf;, with the eigenvalues chosen by the water-filling
procedure.

At each step of the algorithm, exactly one user optimizeschigariance matrix while treating the
signals from all other users as noise. In the next step, tke user (in numerical order) optimizes his
covariance while treating all other signals, including tygdated covariance of the previous user, as

noise. This intuitively appealing algorithm can easily ®w8n to satisfy the conditions of [1, Section
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2.7] and thus provably converges. Furthermore, the opétitia in each step of the algorithm simplifies
to water-filling over an effective channel, which is compiagtaally efficient.

If we let Q7,. .., Qj denote the optimal covariances, then optimality implies:

f(Q17 e 7QK) - Ql len(},%r}f((Ql)SPIf(Ql’ .. '7Qi—17Qia Qi+17 L) 7QK) (11)

for any . Thus, Qj is a water-fill of the noise and the signals from all other ssge. is a waterfill
of the channeH; (I+3_, H}Qj—Hj)—l/?), while Qj is simultaneously a water-fill of the noise and
the signals from all other users, and so forth. Thus, the sapaaty achieving covariance matrices
simultaneouslyvater-fill each of their respective effective channels [1vith the water-filling levels (i.e.
the eigenvalues) of each user determined by the power eimst;. In the next section, we will see
that similar intuition describes the sum capacity achigwinvariance matrices in the MIMO MAC when

there is a sum power constraint instead of individual poverstraints.

V. SUM POWER ITERATIVE WATER-FILLING

In the previous section we described the iterative watkmgiblgorithm that computes the sum capacity
of the MIMO MAC subject to individual power constraints [1¥}e are instead concerned with computing
the sum capacity, along with the corresponding optimal damae matrices, of a MIMO BC. As stated
earlier, this is equivalent to computing the sum capacityadliIMO MAC subject to a sum power

constraint, i.e. computing:

K
Caac(HI, ... HI. P) = max log|T+S HIQH,| . 12
MAC( 1 K ) (Q}E,: Qi0, S5, TrH(Q))<P g ZZ:; ZQZ ) ( )
If we let QJ, ..., Q}% denote a set of covariance matrices that achieve the aboxenona, it is easy to

see that similar to the individual power constraint prohlemach covariance must be a water-fill of the
noise and signals from all other users. More precisely,ittéans that for every, the eigenvectors a);

are aligned with the left eigenvectors Hf; (I + E#i HijHJ) e and that the eigenvalues @};
must satisfy the water-filling condition. However, sincertiis asumpower constraint on the covariances,
the water level of all users must be equal. This is akin torgayhat no advantage will be gained by
transferring power from one user with a higher water-filliegel to another user with a lower water-
filling level. Note that this is different from the individu@ower constraint problem, where the water
level of each user was determined individually and coultediirom user to user. In the individual power
constraint channel, since each user's water-filling leva$ determined by his own power constraint, the
covariances of each user could be updated one at a time. Wilmgower constraint, however, we must

update all covariancesimultaneouslyo maintain a constant water-level.



TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY, 2005 8

Motivated by the individual power algorithm, we propose fodowing algorithm in which all K
covariances are simultaneously updated during each steggdbon the covariance matrices from the
previous step. This is a natural extension of the per-usguesgial update described in Section IV. At
each iteration step we generate an effective channetdahuser based on the covariances (from the
previous step) of all other users. In order to maintain a commater-level, we simultaneously water-fill
across allK effective channels, i.e. we maximize the sum of rates orétheffective channels. The-th

iteration of the algorithm is described by the following:

1) Generate effective channels
—1/2
GV =H; [1+) HIQ" H, (13)
j#
fori=1,... K.
2) Treating these effective channels as parallel, nonfariag channels, obtain the new covariance

matrices{Qf.”)};’i1 by water-filling with total powerP:

QMK = arg max Zm

{Qi}): Qi>0, I, Tr(Qi)<P 4 I+( ) QG

This maximization is equivalent to water-filling the blociagonal channel with diagonals equal
T T
to G ... G, If the SVD of G (GE”)) is written asG\" (G(")) — U,D,U! with U;

7

unitary andD; square and diagonal, then the updated covariance matreegven by:
Q" = UA U] (14)

where A; = [pI — (D;)"!]" and the operatiofiA]* denotes a component-wise maximum with
zero. Here the water-filling level is chosen such thazfil Tr(A;) = P.
We refer to this as theriginal algorithm [6]. This simple and highly intuitive algorithm does in fact
converge to the sum rate capacity wh&n= 2, as we show next:
Theorem 1:The sum power iterative water-filling algorithm convergestte sum rate capacity of the
MAC when K = 2.
Proof: In order to prove convergence of the algorithm fér= 2, consider the following related

optimization problem:

1
max - log |1+ H{AH, + H{B,H,|
A1,A5>0, B1,B>0, Tr(A+A,)<P, Tr(B,+B,)<P 2

1
+5 log ‘1 +HIBH; + H§A2H2( . @15)
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We first show that the solutions to the original sum rate maation problem in (12) and (15) are the
same. If we defineA; = B; = Q; and A; = By = Q,, we see that any sum rate achievable in (12)
is also achievable in the modified sum rate in (15). Furtheemid we defineQ; = %(Al + B;) and

Q2 = 3(As + Bs), we have:

log ‘I + HIQ1H1 + H£Q2H2‘ >
1 1
5 log [T+ H] A1H, + HIBHy| + 5 log [T+ H{BiHy + H{AH,

due to the concavity ofog(det-)). Since T(Q1) + Tr(Qz) = 3Tr(A; + Az + By + By) < P, any sum
rate achievable in (15) is also achievable in the origind).(Thus, every set of maximizing covariances
(A1,A5,B;,By) map directly to a set of maximizingQ:, Q2). Therefore, we can equivalently solve
(15) to find the uplink covariances that maximize the sura-extpression in (12).

Now notice that the maximization in (15) has separable caims on(A;, A;) and(B1,B2). Thus,
we can use the block coordinate ascent method in which wemizexiwith respect tq A1, As) while
holding (B4, B,) fixed, then with respect t¢B;, B2) while holding (A1, A,) fixed, and so on. The

maximization of (15) with respect tpA;, As) can be written as:

max log |T + G{Alc;l‘ + log ‘1 + GIALG, (16)
A],A2207 TI’(A1+A2)§P

whereG, = H;(I+ H}ByH,)"'/2 and G, = Hy(I + HIB,H,)~ /2. Clearly, this is equivalent to the
iterative water-filling step described in the previous gecivhere(B1, B2) play the role of the covariance
matrices from the previous step. Similarly, when maxingzimith respect toqB;, B;), the covariances
(A4, A,) are the covariance matrices from the previous step. Thergberforming the cyclic coordinate
ascent algorithm on (15) is equivalent to the sum power titerawvater-filling algorithm described in
Section V.

Furthermore, notice that each iteration is equal to theutation of the capacity of a point-to-point
(block-diagonal) MIMO channel. Water-filling is known to leptimal in this setting, and in Appendix
Il we show that the water-filling solution is the unique sauat Therefore, by [18, pg. 228] [1, Chapter
2.7], the block coordinate ascent algorithm converges Umxat each step of the algorithm there is a
unique maximizing solution. Thus, the iterative wateifdl algorithm given in Section V converges to
the maximum sum rate whel = 2. [ |
However, rather surprisingly, this algorithm does not glsvaonverge to the optimum whed > 2, and

the algorithm can even lead to a strict decrease in the a@geftinction. In the following sections, we



TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY, 2005 10

provide modified versions of this algorithm that do conveigeall K.

VI. MODIFIED ALGORITHM

In this section we present a modified version of the sum potweeative water-filling algorithm and
prove that it converges to the sum capacity for any numbersefaf. This modification is motivated
by the proof of convergence of the original algorithm feér= 2. In the proof of Theorem 1, a sum of
two log det functions, with four input covariances is consideresteaad of the originalog det function.

We then applied the provably convergent cyclic coordinateat algorithm, and saw that this algorithm
is in fact identical to the sum power iterative algorithm. &hthere are more than 2 users (ife.> 2)

we can consider a similar sum @& log det functions, and again perform the cyclic coordinate ascent
algorithm to provably converge to the sum rate capacityhisi¢ase, however, the cyclic coordinate ascent
algorithm is not identical to the original sum power itevatwater-filling algorithm. It can, however, be
interpreted as the sum power iterative water-filling altpon with a memory of the covariance matrices
generated in the previous — 1 iterations, instead of just in the previous iteration.

For simplicity, let us consider th& = 3 scenario. Similar to the proof of Theorem 1, consider the

following maximization:
max % log [T+ H{ A H, + HIB,H; + HCyH;|
+% log [T + H|C1Hy + H]ASH, + H{B;H;|
+% log ‘I + HIB1H1 + H;CQHZ + H};Agﬂs‘ a7

subject to the constrains; > 0, B; >0, C; > 0fori=1,2,3, Tr(A;+As+A3) < P, Tr(B; +Ba+
Bj3) < P, and T(C; + C2+ C3) < P. By the same argument used for the two user case, any sototion
the above maximization corresponds to a solution to thar@igptimization problem in (12). In order to
maximize (17), we can again use the cyclic coordinate asalgotithm. We first maximize with respect
to A = (A1, Ay, A3), then with respect t& = (By, B, B3), then with respect t€ £ (Cy, Cy, C3),
and so forth. As before, convergence is guaranteed due tartlggieness of the maximizing solution
in each step [1, Section 2.7]. In the two user case, the cgdardinate ascent method applied to the
modified optimization problem yields the same iterative exditling algorithm proposed in Section V
where the effective user of each channel is based on theiangarmatrices only from the previous step.
In general, however, the effective channel of each userrtbpen covariances which are up &0 — 1

steps old.



TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY, 2005 11

AO =Q=2» BO=Q-H O =qQO

Upi!ate i i Q' £ argmaxq f“7(Q,Q"", Q)
AD =QW BMO =qQ-V c® =0
i Upéate i Q® 2 argmaxq f“7(QW, Q, Q)
A® =QW B® =Q® c® = QO
i | Update Q) £ argmaq f7(Q. Q. Q)
AG = QW B® =Q® Cc® =Q®
Upciate i i Q" £ argmaxq f“7(Q,Q®, Q")
AW =QW B®W =Q® cW =Q®
cee

Fig. 2. Graphical representation of Algorithm 1

A graphical representation of the algorithm for three useshown in Fig. 2. HereA (™ refers to the
triplet of matrices(A, Ay, As) after then-th iterate. Furthermore, the functigit*?(A, B, C) refers to
the objective function in (17). We begin by initializing alariables to some\ (), B(O) C(©) . |n order
to develop a more general form that generalizes to arbitfédrywe also refer to these variables as
Q2, Q=1 Q. Note that each of these variables refers to a triplet of Gamae matrices. In step 1,
A is updated while holding variabld8 and C constant, and we defin@) to be the updated variable
AM:

QW2 AN = arg | max feep <Q,B(O),C(O)> (18)
Q: Q;>0, >°7_, Tr(Q:)<P

~ arg max 7 (Q.Q1,.Q®) (19)
Q: Q:20, 357, T(Q))<P

In step 2, the matriceB are updated witlQ(® £ B(), and in step 3 the matrice8 are updated with
Q® 2 c®), The algorithm continues cyclically, i.e. in stepMis again updated, and so forth. Notice
that Q™ is always defined to be the set of matrices updated imthte iteration.

In Appendix lll we show that the following is a general forraubr Q():

Q" = arg max Fr (Q.QURY, L Qi) (20)
Q: Q;>0, 3K Tr(Q:)<P

K

= arg max Z log

(21)
Q: Q:>0, X5, Q<P i=1

1+ (ng))T QG|
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where the effective channel of Usgein the n-th step is:
-1/2

(n) (n—K+j)
G =H, I+ ZHW o T H (22)

where[z]x = mod@—1, K)+1. Clearly, the previous —1 states of the algorithm (. Q" K+1 .. Q1)
must be kept in memory in order to generate these effectiaarodls.

We now explicitly state the steps of Algorithm 1. The covades are first initialized to scaled versions
of the identity, i.e. Qg.") = eIforj=1,...,K andn = —(K — 2),...,0. The algorithm is almost
identical to the original sum power iterative algorithm tlwithe exception that the expression for each
effective channel now depends on covariance matrices gttkin the previoudd — 1 steps, instead of

just on the previous step:

1) Generate effective channels
—1/2

G =H; |1+ Z H 5, QU Hier 23)

fori=1,... K.
2) Treating these effective channels as parallel, nonfgriag channels, obtain the new covariance
matrices{QZ(.")}{i1 by water-filling with total powerP:
QMK = o o Ly <leog ‘I +(G")QG!
We refer to this a\lgorithm 1 Next we prove convergence to the sum rate capacity:
Theorem 2:Algorithm 1 converges to the sum rate capacity for dny
Proof: Convergence is shown by noting that the algorithm is theicydordinate ascent algorithm
applied to the functionf<*?(-). Since there is a unique (water-filling) solution to the nmaiziation in
step 2, the algorithm converges to the sum capacity of thareddor any number of user&.> More

precisely, convergence occurs in the objective of the edgdriunction:

lim 7 (QUFHY, QM) = Cuac(H],... H, P) (24)

n—oo

“The algorithm converges frommny starting point, but for simplicity we have chosen to initial using the identity covariance.
In Section IX we discuss the large advantage gained by ubmgriginal algorithm for a few iterations to generate a agrsbly
better starting point.

®Notice that the modified algorithm and the original algaritin V are equivalent only foix = 2.
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A0 = QO BO =Q® Cc® =QO

Uptiiate i i S £ argmaxq f“7(Q,Q"", Q)
g() Q(O) Q(O)
Average A
g Q(l) L % 2Q(0

T

AM =qQW B =QW Cc® =qQW

| Update | sY2agmeas@”.@.QY)
Q(l) S?) Q(l)
Average Q® £ % 2Q(1

=QW B® =Q® c®=Q®

Fig. 3. Graphical representation of Algorithm 2 faf = 3

Convergence is also easily shown in the original objectivecfion f(-) because the concavity of the
log(det()) function impliesf (% S e QYA Qﬁ?) > fep (QU=R+D . Q).
Thus, if we average over the covariances from the previgugerations, we get:

nl;n;of@ Z Ql,..., Z QK>—CMAC<H1,...,H}(,P) (25)

l=n—K+1 an+1
|

Though the algorithm does converge quite rapidly, the megumemory is a drawback for large.

In the next section we propose an additional modificatiorettuce the required memory.

VIl. ALTERNATIVE ALGORITHM

In the previous section, we described a convergent algoritiat requires memory of the covariance
matrices generated in the previolis- 1 iterations, i.e. ofK (K —1) matrices. In this section we propose a
simplified version of this algorithm that relies solely o ttovariances from the previous iteration, but is
still provably convergent. The algorithm is based on theesaasic iterative waterfilling step, but in each
iteration the updated covariances are a weighted sum ofltheovariances and the covariances generated
by the iterative water-filling step. This algorithm can bewed as Algorithm 1 with the insertion of an

averaging step after each iteration.
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A graphical representation of the new algorithm (referrecas Algorithm 2 herein) fork = 3 is
provided in Fig. 3. Notice that the initialization matricage chosen to be all equal. As in algorithm
1, in the first stepA is updated to give the temporary varial8€"). In algorithm 1, we would assign
(AW BW ¢y = (s B ), and then continue by updatifg, and so forth. In algorithm 2,
however, before performing the next update (i.e. beforeatipd B), the three variables ar@veraged
to giveQ) & %(s(l)+Q(0)+Q(0)) = %3(1)4_%(3(0), and we sefA), B, c) = (QW, QM, Q).
Notice that this averaging step does not decrease the Mgjgat. f<*7(QM, Q™M, QM) > ferr(s(M Q) Q©)),
as we show later. This is in fact crucial in establishing @gence of the algorithm.

After the averaging step, the update is again performedihimitime onB. The algorithm continues in
this manner. It is easy to see that the averaging step esheertiminates the need to retain the previous
K —1 states in memory, and instead only the previous stat&(i’e »)) needs to be stored. The general

equations describing the algorithm are

g — arguma 7 (Q,Q<"—1>,...,Q<"—1>> (26)
1 K—1
Q =S 4 == Q. 27)

The maximization in (26) that define®™ is again solved by the waterfilling solution, but where the
effective channel depends only on the covariance matrizes the previous state, i.€Q "1,

After initializing Q(©), the algorithm proceeds as follofvs

1) Generate effective channels for each user:

—1/2
G = (I+ZHT (n=lyy ) i=1,... K (28)

J#i
2) Treating these effective channels as parallel, nonfariag channels, obtain covariance matrices

{1} | by water-filling with total powerP:

{S( K —arg max Zlog I—I—( > SG()

{S:}K . 8;>0, K Tr(S:) <P

3) Compute the updated covariance matriQég as:

Lgm EQE"_” i=1,... K. (29)

K K
Algorithm 2 (which first appeared in [11]) differs from theiginal algorithm only in the addition of the

Q"

third step.

®As discussed in Section IX, the original algorithm can bedusegenerate an excellent starting point for Algorithm 2.
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Theorem 3:Algorithm 2 converges to the sum rate capacity for dny
Proof: Convergence of the algorithm is proven by showing that @gar1 is equivalent to algorithm

2 with the insertion of a non-decreasing (in the objectiy@gration in between every iteration. The spacer
step theorem of [18, Chapter 7.11] asserts that if an algarisatisfying the conditions of the global
convergence theorem [18, Chapter 6.6] is combined itk series of steps that do not decrease the
objective, then the combination of these two will still cenge to the optimal. The cyclic coordinate
ascent algorithm does indeed satisfy the conditions of thbad convergence theorem, and below we
prove that the averaging step does not decrease the okje€Etius, algorithm 2 converges

Consider then-iteration of the algorithm, i.e.

(n—1) -1y _, (g Q-1 (n—1)
Q" ,....,Q" ) (8", Q s QU (30)
1 K—1 . _ 1y K—1_.
— (EsmTQm 1>,...,?s<>+TQ< 1>> (31)

where the mapping in (30) is the cyclic coordinate ascerdrdlgn performed on the first set of matrices,
and the mapping in (31) is the averaging step. The first stagperly identical to algorithm 1, while
the second step (i.e. the averaging step) has been addede&tleonly show that the averaging step is
non-decreasing, i.e.

1
K

St
K

Q... Lgm EQ(n—n) .

(n)
S K K
(32)

feep (S(”), Q(n—1)7 o 7Q(n—1)> < fewr <

Notice that we can rewrite the left side as:

K
1 n n—
Fer(s™,QU .., Q) = 3 log T+ HIS!H, + Y HIQ)"VH,
i=1 ji

K
log |~ S (1+HSMH + Y HIQ! VH,

IN

K
1oy K—1
- 1ogI+ZHj< s+ = -qQ! ”)Hj

_ e <%S(n> n %Q(n—n, . %Sm) n %Q(n—n)

where the inequality follows from the concavity of theg | - | function. Since the averaging step is

non-decreasing, the algorithm converges. More precigiély,meansf< (Q™, ..., Q™) converges to

"There is also a technical condition regarding compactnéskeoset with larger objective than the objective evalugtsd

the initialization matrices that is trivially satisfied dte the properties of Euclidean space.
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the sum capacity. Since this quantity is equa!ft(xg(")), we have

lim f (Q<">) = Cyac(Hl,... =i P) (33)

n—oo

VIIl. COMPLEXITY ANALYSIS

In this section we provide complexity analyses of the thremppsed algorithms and other algorithms
in literature. Each of the three proposed algorithms here lewmmplexity that increasdmearly with
K, the number of users. This is an extremely desirable prgpeen considering systems with large
numbers of users (i.e0 or 100 users). The linear complexity of our algorithm is quite e&sysee if
one goes through the basic steps of the algorithm. For siityplive consider Algorithm 1, which is the
most complex of the algorithms. Calculating the effectitiamnels in step 1 requires calculating the total
interference seen by each user (i.e. a term of the fornd efzj# HjQiHi]). A running sum of such
a term can be maintained, such that calculating the efieacihannel of each user requires only a finite
number of subtractions and additions. The waterfilling apen in step 2 can also be performed in linear
time by taking the SVD of each of the effective channels arahtivaterfilling. It is important not to
perform a standard waterfilling operation on the block dimd@hannel, because the size of the involved
matrices grow withK. In general, the key idea behind the linear complexity of algorithm is that the
entire input space is never considered (i.e. aNlk N and M x M matrices, and never matrices whose
size is a function ofK’, are considered). This, however, is not true of generahdp#tion methods which
do not take advantage of the structure of the sum capacityigoro

Standard interior point methods have complexity that isicutith respect to the dimensionality of
the input space (i.e. with respect 6, the number of users), due to the complexity of the inner lgawt
iterations [2]. The minimax based approach in [8] also haspexity that is cubic inK” because matrices
whose size is a function ok are inverted in each step. For very small problems, this tssigmificant,
but for even reasonable values &f (i.e. K = 10 or K = 20) this increase in complexity makes such
methods computationally prohibitive.

The other proposed specialized algorithms [13] [15] are tear in complexity (inK). However, the
steepest descent algorithm proposed in [13] requires askaech in each step, which does not increase
the complexity order but does significantly increase ruretiithe dual decomposition algorithm proposed
in [15] requires an inner optimization to be performed witlgiach iteration (i.e. user-by-user iterative

waterfilling [17] with a fixed water level, instead of individl power constraints, must be performed
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repeatedly), which significantly increases run time. Oun faower iterative waterfilling algorithms, on
the other hand, do not require a line search or an inner apdiion within each iteration, thus leading to
a faster run time. In addition, we find the iterative watérfil algorithms to converge faster than the other

linear complexity algorithms for almost all channel reatians. Some numerical results and discussion

of this is presented in the next section.
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IX. NUMERICAL RESULTS

In this section we provide some numerical results to showbiisleavior of the three algorithms. In
Figure 4, a plot of sum rate vs. iteration number is providadaf 10 user channel with 4 transmit and 4
receive antennas. In this example, the original algorittwasdnot converge and can be seen to oscillate
between two sub-optimal points. Algorithms 1 and 2 do cageehowever, as guaranteed by Theorems
2 and 3. In general, it is not difficult to randomly generatarutels for which the original algorithm
does not converge and instead oscillates between subalppioints. This divergence occurs because
not only can the original algorithm lead to a decrease in tiva sate, but additionally there appear to
exist sub-optimal points between which the original altjon can oscillate, i.e. point 1 is generated by
iteratively waterfilling from point 2, and vice versa.

In Fig. 5 the same plot is shown for a different channel (wite same system parameters as in Fig.
4: K =10, M = N = 4) in which the original algorithm does in fact converge. Netithat the original
algorithm performs best, followed by Algorithm 1, and thelgéyithm 2. The same trend is seen in Figure
6, which plots the error in capacity. Additionally, notideat all three algorithms converge linearly, as
expected for this class of algorithms. Though these platsoaty for a single instantiation of channels,
the same ordering has always occurred, i.e. the originaristhgn performs best (in situations where it
converges) followed by Algorithm 1 and then Algorithm 2.

The fact that the original algorithm converges faster tham modified algorithms is intuitively not

surprising, because the original algorithm updates mesrat a much faster rate than either of the modified
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versions of the algorithm. In Algorithm 1, there aké covariances for each user (corresponding to the
K previous states) that are averaged to yield the set of covees that converge to the optimal. The
most recently updated covariances therefore make up onhaaiidn 1/K of the average, and thus
the algorithm moves relatively slowly. In Algorithm 2, th@dated covariances are very similar to the
covariances from the previous state, as the updated cacasare equal toi —1)/K times the previous
state’s covariances plus only a factorlgfK’ times the covariances generated by the iterative watedilli
step. Thus, it should be intuitively clear that in situaamhere the original algorithm actually converges,
convergence is much faster for the original algorithm thaneither of the modified algorithms. From
the plot it is clear that the performance difference betweenoriginal algorithm and Algorithms 1 and
2 is quite significant. At the end of this section, however, digcuss how the original algorithm can
be combined with either Algorithm 1 or 2 to improve perforroarconsiderably while still maintaining
guaranteed convergence. Of the two modified algorithmspiitlym 1 is almost always seen to outperform
Algorithm 2. However, there does not appear to be an inwiigixplanation for this behavior.

In Figure 7(a) sum rate is plotted for the three iterativeesfdting algorithms (original, Algorithm
1, and Algorithm 2), the steepest descent method [13], aeditlal decomposition method [15], for a
channel withK = 10, M = 10, and N = 1. The three iterative waterfilling algorithms perform ngarl

identically for this channel, and three curves are in fagiesimposed on one and other in the figure.
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Furthermore, the iterative waterfilling algorithms comemore rapidly than either of the alternative
methods. The iterative waterfilling algorithms outperfotine other algorithms in many scenarios, and
the gap is particularly large when the number of transmieamas (/) and usersK) are large. It should
be noted that there are certain situations where the stedpssent and dual decomposition algorithms
outperform the iterative waterfilling algorithm, in padlar when the number of users is much larger than
the number of antennas. Figure 7(b) contains a convergdnt®fpa 50 user system witd/ = 5 and

N = 1. Algorithm 1 converges rather slowly precisely becauseéheflarge number of users (i.e. because
the covariances can only change at approximately a ratg &fin each iteration, as discussed earlier).
Notice that both the steepest descent and dual decompoasitjorithms converge faster. However, the
results for ahybrid algorithm are also plotted here (referred to as “Original lgokithm 27). In this
hybrid algorithm, the original iterative waterfilling algthm is performed for the first five iterations,
and then Algorithm 2 is used for all subsequent iteratiorige ®riginal algorithm is essentially used to
generate a good starting point for Algorithm 2. This hybrigogithm converges, because the original
algorithm is only used a finite number of times, and is seenutperform any of the other alternatives.
In fact, we find that the combination of the original algomithwith either Algorithm 1 or 2 converges
extremely rapidly to the optimum and outperforms the aléve linear complexity approaches in the
very large majority of scenarios, i.e. for any number of as®rd antennas. This is true even for channels
for which the original algorithm itself does not convergechuse running the original algorithm for a

few iterations still provides an excellent starting point.

X. CONCLUSIONS

In this paper we proposed two algorithms that find the sum @gpachieving transmission strategies
for the multiple antenna broadcast channel. We use the fiattthe Gaussian broadcast and multiple-
access channels are duals in the sense that their capagitynseand therefore their sum capacities,
are equal. These algorithms compute the sum capacity aegistrategy for the dual multiple-access
channel, which can easily be converted to the equivalemnapstrategies for the broadcast channel. The
algorithms exploit the inherent structure of the multiplezess channel and employ a simple iterative
water-filling procedure that provably converges to theroptn. The two algorithms are extremely similar,
as both are based on the cyclic coordinate ascent and usigte-gser waterfilling procedure in each
iteration, but they offer a simple tradeoff between perfance and required memory. The convergence
speed, low complexity, and simplicity make the iterativetavfilling algorithms extremely attractive

methods to find the sum capacity of the multiple antenna lmastdcchannel.
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APPENDIX |

MAC-BC TRANSFORMATION

In this appendix, we restate the mapping from uplink covaréamatrices to downlink matrices. Given
uplink covariance®), ..., Qgk, the transformation in [10, Equations 8-10] outputs donklEovariance
matricesXy, ..., Xk that achieve the same rates (on a user-by-user basis, andlwin terms of sum
rate) using the same sum power, i.e. v@fil Tr(Q;) = Zfil Tr(3;). For convenience, we first define
the following two quantities:

i1 K
A AT+H; (Z zl> H/, B,2I+ ) H/QH, (34)
=1 l=i+1
fori = 1,..., K. Furthermore, we write the SVD decompositiorRf '/*HIA'/? asB; /*HIA; /2 =
FZ-DZ-GZT, whereD; is a square and diagonal mafixrhen, the equivalent downlink covariance matrices

can be computed via the following transformation:
>, = B; /’F,GIA[* QA ?G,FIB 2, (35)

beginning with: = 1. See [10] for a derivation and more detail.

APPENDIX ||

UNIQUENESS OFWATER-FILLING SOLUTION

In this appendix we show there is a unique solution to theo¥dhg maximization:

1 (1 H HT‘ 36
QZQH%?(}‘(Q)SP o8 |1+ Q ( )

for any non-zeroH ¢ CN*M for arbitrary M, N. This proof is identical to the proof of optimality of
water-filling in [9, Section 3.2], with the addition of a sihepproof of uniqueness.

SinceH'H ¢ CM*M js Hermitian and positive semi-definite, we can diagonatized write H'H =
UDU' whereU € CM*M js unitary andD € RM*M s diagonal with non-negative entries. Since
the ordering of the columns dU and the entries oD are arbitrary and becaud® must have at
least one strictly positive entry (becauBEis not the zero matrix), for simplicity we assurni®; > 0
fori =1,...,LandD;; = 0fori =L+ 1,...,M for somel < L < M. Using the identity
I+ AB| = I+ BA|, we can rewrite the objective function in (36) as:

log (1 n HQHT‘ — log ‘1 + QHTH( — log (1 + QUDUT( — log (1 +utQuDb|. 37)

8Note that the standard SVD command in MATLAB does not retusqare and diagonaD;. This is accomplished by using

the “0” option in the SVD command in MATLAB, and is referred &3 the “economy size” decomposition.
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If we defineS £ UTQU, thenQ = USU'. Since T(AB) = Tr(BA) and U is unitary, we have
Tr(S) = Tr(UTQU) = Tr(QUUT) = Tr(Q). FurthermoreS > 0 if and only if Q > 0. Therefore, the

maximization can equivalently be carried out ori.e.:

log |I+ SD] . 38
520 1% < og [I+ SD| (38)

In addition, each solution to (36) corresponds to a diffesaiution of (38) via the invertible mapping
S = UTQU. Thus, if the maximization in (36) has multiple solutionBe tmaximization in (38) must
also have multiple solutions. Therefore, it is sufficienstow that (38) has a unique solution, which we
prove next.

First we show by contradiction that any optinlmust satisfyS,; = 0 for all 4,5 > L. Consider
anS > 0 with S;; # 0 for somei > L andj > L. Since|S;;| < /S;S;; for any S > 0, this
implies S;; > 0 andS;; > 0, i.e. at least one diagonal entry Bfis strictly positive below thel-th
row/column. Using Hadamard’s inequality [5] and the facitth,; = 0 for : > L, we have|l + SD| <
]‘[f‘il(l +8S;iDii) = HiLzl(l +8S:;D;;). We now construct another matr that achieves a strictly larger
objective tharS. We defineS’ to be diagonal with

Sii+ it S i=1
i =4 Sy i=2,...,L (39)
0 i=L+41,.... M
Clearly S’ > 0 and T(S') = 3.7, S}, = S11 + 300, .1 Sii + 25 Sis = Tr(S). SinceS’ is diagonal,

the matrixS'D is diagonal and we haveg [T + S'D| = log [T~ (14 S};Dy) > log [T, (1+S:uDy;) >

log |I + SD|, where the strict inequality is due to the fact ti#f > S;; andDy; > 0. Therefore, the

optimal S must satisfyS;; = 0 for all ¢,j > L.

Next we show by contradiction that any optinfmust also be diagonal. Consider afiy> 0 that
satisfies the above conditio8;; = 0 for all 7,7 > L) but is not diagonal, i.€S;; # 0 for somek # j
andk, j < L. SinceD is diagonal and;; > 0 fori =1, ..., L, the matrixSD is not diagonal because
(SD),; = Si;Dj; # 0. Since Hadamard's inequality holds with equality only foagbnal matrices,
we havelog |I + SD| < log Hle(l + S;iD;;). Let us define a diagonal matr&’ with S, = S;; for
i=1,...,M. Clearly T(S’) = Tr(S) andS’ > 0. SinceS’ is diagonal, the matri8'D is diagonal and
thuslog [I + S'D| = log Hle(l + Si;Dy;) > log |I + SD|. Therefore, the optimab must be diagonal,
as well as satisfys;; = 0 for i,5 > L.

Therefore, in order to findll solutionsto (38), it is sufficient to only consider the class of diagpna
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positive semi-definite matrice$ that satisfyS;; = 0 for all 7,5 > L and T(S) < P. The positive semi-
definite constraint is equivalent 8; > 0 for i = 1, ..., L, and the trace constraint giv@fz1 S, < P.
Sincelog [I+ S'D| = log Hf:1(1+S§iDZ-Z-) for this class of matrices, we need only consider the folfmpvi

maximization:

L
max log(1 4+ S;;Dy;). 40
{S”}f:]: S.,>0. Zle SM<PZZ_; g( 11 22) ( )

SinceD;; > 0fori=1,..., L, the objective in (40) is a strictly concave function, andshas a unique

maximum. Thus, (38) has a uniqgue maximum, which implies (Bé) also has a unique maximum.

APPENDIXIII

DERIVATION OF ALGORITHM 1

In this section we derive the general form of Algorithm 1 for arbitrary number of users. In order

to solve the original sum rate capacity maximization in (¢ consider an alternative maximization:

erp
S(lﬁl%((mf (S(1),...,S(K)) (41)
where we defin&(i) £ (S(i)1,...,S(i)k) fori = 1,..., K with S(i); € CV*¥, and the maximization

is performed subject to the constrais§); > 0 for all 4, j and z;ilTr(S(z')j) <Pfori=1,...,K.

The function f¢*?(-) is defined as:

K K
feP(S(1),...,S(K)) = %Zlog I+ HIS([j—i+1)k);Hj|. (42)
i=1 j=1

In the notation used in Section VI, we would hae= S(1), B = S(2), C = S(3). As discussed
earlier, every solution to the original sum rate maximizatproblem in (12) corresponds to a solution
to (41), and vice versa. Furthermore, the cyclic coordirsteent algorithm can be used to maximize
(41) due to the separability of the constraintsSii), ..., S(K). If we let {S(i)™}X, denote then-th

iteration of the cyclic coordinate ascent algorithm, thiea tollowing holds:

argmaxg f¢°P (S(1)("~V, ..., S(m — )"~V S, S(m + 1)~V ... S(K)" D) I=m

S = (43)
S(1)tn=1 1 #m
for | = 1,...,K, wherem = [n]x. For eachn, we defineQ(™ to be the updated matrices in that
iteration:
Q" & S(m)™ (44)

~ argmax f7 (S(1)<"—1>, o Stm — D)V S S(m + 1)L S(K)(”‘l)) (45)

= argmax f7 (S, S(m + 1), S(K) "V, (1), S(m — )"V (46)
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where in the final step we used the fact that

P (S(1),...,S(K)) = f?(S(1),...,S(K),S(1),...,S(1-1)) (47)

for any [ due to the circular structure gf*? and the uniqueness of the waterfilling solution to (46).

Plugging in recursively foQ(™ for all n, we get:

Q" = argmax /7 (Q.QU K, .. Q) (48)
K-1 k)
= ar log [T+ HIQH, +> Hl ., Q" XHm, . | (49
gQ: Q.>0, r%&}(x Q) <PZ °8 iQ ]Z:; fi+71 Qict 1 i+l | (49)
n T n
= arg max Zlog I+ <GZ( )> QiG,(- ) (50)
Q: Q,>0, K, Qi) <p?
The final maximization is equivalent to waterfllllng overegifive channel&;, given by:
—1/2
(n) _ (n—K+j)
Gi =H; (I+ Z Hz-i—j [i+7] x H[H‘j]K (51)
fori=1,... K.
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