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Cramér–Rao Lower Bounds for Low-Rank
Decomposition of Multidimensional Arrays
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Abstract—Unlike low-rank matrix decomposition, which is
generically nonunique for rank greater than one, low-rank three-
and higher dimensional array decomposition is unique, provided
that the array rank is lower than a certain bound, and the correct
number of components (equal to array rank) is sought in the
decomposition. Parallel factor (PARAFAC) analysis is a common
name for low-rank decomposition of higher dimensional arrays.
This paper develops Cramér–Rao Bound (CRB) results for
low-rank decomposition of three- and four-dimensional (3-D and
4-D) arrays, illustrates the behavior of the resulting bounds, and
compares alternating least squares algorithms that are commonly
used to compute such decompositions with the respective CRBs.
Simple-to-check necessary conditions for a unique low-rank
decomposition are also provided.

Index Terms—Cramér–Rao bound, least squares method, ma-
trix decomposition, multidimensional signal processing.

I. INTRODUCTION

FOR matrices [two-dimensional (2-D) ortwo-way ar-
rays], the low-rank property in itself is not enough to

guarantee a unique data model, and one has to resort to
additional problem-specific structural properties to obtain a
unique parameterization. Examples include orthogonality (as
in singular value decomposition), Vandermonde, Toeplitz,
or finite-alphabet constraints. Notwithstanding the lack of
inherent uniqueness, low-rank matrix decomposition plays a
key role in modern signal processing.

The concept of rank can be extended to arrays in three or
higher dimensions in a natural way [14], [15]. Low-rank decom-
position of three-dimensional (3-D) arrays was developed by
Harshman [8]–[10] under the name parallel factor (PARAFAC)
analysis and independently by Carroll and Chang [6] under the
name canonical decomposition (CANDECOMP), building on a
inconspicuous principle proposed in the factor analysis litera-
ture by Cattell [7]. Interestingly, these developments actually
preceded the fundamental work on higher dimensional array
rank [14], [15]. Quite unlike low-rank matrix decomposition,
which is generically nonunique for any rank greater than one,
low-rank, 3-D array decomposition is essentially unique for a
meaningful range of low-enough ranks [14], and the situation
actually improves in higher dimensions [21]. This remarkable
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fact was illustrated by Cattell and rigorously established under
increasingly milder conditions over a span of some 30 years by
various authors [8]–[10], [14], [15], [20], [21], [25].

Low-rank decomposition of multidimensional arrays has
been used as as a data analysis tool in an unusual variety
of disciplines, e.g., [2], [5], [6], [10], [14], and [16], to
mention a few. More recently, it was shown to have exten-
sive application in signal processing and communications,
including blind multiuser detection in direct-sequence code-di-
vision multiple-access (DS-CDMA) communications [25],
multiple-invariance sensor array processing [24], blind beam-
forming in specular multipath [17], [26], and, in more general
terms, blind diversity-combining in communications [22]. De-
spite these wide-ranging applications, pertinent Cramér–Rao
bounds (CRBs) for low-rank decomposition of multidimen-
sional arrays have been missing from the literature. The first
contribution of this paper is the development of CRBs for
low-rank decomposition of 3-D and four-dimensional (4-D)
arrays. Complex model parameters and a complex circularly
symmetric white Gaussian noise model are assumed, but some
special cases are also considered due to their importance in
applications: a 3-D array with Vandermonde structure in one
dimension, and the real-parameter 3-D case.

A wide variety of algorithms have been developed for com-
puting low-rank decomposition in three and higher dimensions.
These range from eigenvalue-type algebraic techniques [19],
[20] to alternating least squares (ALS) algorithms [8]–[10]; see
[25] for a readily available reference and [5] and [23] for a tuto-
rial overview. Among these possibilities, ALS is the workhorse
technique that is mostly preferred in practice [5], [23]. Even
though ALS has been used extensively in this context and it has
many desirable properties, its performance has not previously
been measured relative to the CRB. This is the second contribu-
tion of this paper: putting ALS to the test versus the CRB and
verifying that, indeed, the performance of ALS comes close to
the CRB. This means that the CRB can be used to predict the av-
erage behavior of ALS, which in turn makes the CRB a valuable
design tool. For example, in the context of DS-CDMA com-
munications [25] and diversity-combining [22] in more gen-
eral terms, the CRB allows quantitative evaluation of the di-
versity tradeoff for a specified performance. The real-parameter
Gaussian CRB for low-rank decomposition of 3-D data can be
used to improve experimental design in PARAFAC applications
in chemistry; see [5] and references therein.

The paper is organized as follows. The model is introduced
in Section II, including sufficient uniqueness conditions.
Section III provides a starting point and roadmap for the
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pertinent CRBs (associated derivations are deferred to the
Appendices). These bounds are discussed and illustrated in
Section IV. Simple-to-check necessary uniqueness conditions
are developed in Section V. Multilinear ALS is compared with
the CRB in Section VI. Conclusions are drawn in Section VII.

Some notation conventions that will be used in this paper
follow.

Transpose of .
Complex conjugate of .
Conjugate transpose of.
th column of .
th column of ( is the th row of ).

Kronecker product of and .
Khatri–Rao (column-wise Kronecker) product of

and .
the Hadamard (element-wise) product ofand :

;
Diagonal matrix constructed out of theth row of

.
Kronecker delta: when , and
when , and are integers.
Frobenius norm.
Matrix pseudo-inverse.

II. M ULTIDIMENSIONAL LOW-RANK MODELING

Consider an matrix . rank if and only if
can be written as a sum of but no less than rank-one

matrices (vector outer products)

(1)

where is , and is . Note that we may assume
without loss of generality that the columns ofand are lin-
early independent; otherwise, at least one of therank-one
components can be absorbed in the others. In general,

, but if , then constitutes a
low-rank decomposition of . Let denote the th entry
of . A scalar view of the relationship is

(2)

for all , and , with obvious notation.
Observe that is written as a sum of double products, i.e., it
admits an -component bilinear decomposition.

Next, consider an 3-D (also known asthree-way)
array with typical element , and the component tri-
linear decomposition:

(3)

for all , , and . Equation
(3) expresses the three-way arrayas a sum of rank-one
three-way factors, each one of which is the “outer product” of
three vectors. Analogous to the definition of matrix (two-way
array) rank, the rank of a three-way arrayis defined as the

minimum number of rank-one (three-way) components needed
to decompose .

Define an matrix with typical element
, matrix with , matrix

with , and matrices with
. Compact matrix representations of the model in (3) are

made possible by employing the Khatri–Rao matrix product.
For example

...
...

(4)
The superscript means that the matrix is of size
and that the -index ( goes first in the product ) runs faster
than the -index along its rows. By symmetry

(5)

and

(6)

Next, consider an 4-D array with typical
element

(7)

for , , , and .
Define a matrix with typical element

and matrix with . Similar to the
three-way case, the Khatri–Rao product can be used to cast the
model in (7) in matrix form. For example

(8)

The Khatri–Rao product has the property
[13]; in addition, the order of Khatri–Rao multi-

plications only affects the order of rows in the final result [13].
In particular, rank is not affected by the order in which the mul-
tiplications are carried out.

Further generalizing to dimensions

(9)

for , , where . Upon

defining matrices with , many
matrix representations are possible, e.g.,

A. Uniqueness

Definition 1: The -rank of a matrix (which is
denoted by ) is if and only if every columns of are
linearly independent and either has columns or contains
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a set of linearly dependent columns. Note that-rank is
always less than or equal to rank

, . -rank stands forKruskal-rank [14]; the term
was coined by Harshman and Lundy [11].

Theorem 1: (Sufficient condition for uniqueness of low-rank
decomposition of -way arrays[21], [22]; cf. [14] for a basic
precursor result, and [25] for its complex counterpart). Consider
the -component -way array given in (9), and suppose that it
is irreducible (i.e., the rank of the -way array is ). If

(10)

then the -way array , ,
has unique rank-one -way factors

Note that the three-way array rank must be low enough
relative to the maximum possible sum of-ranks, e.g.,

in the
three-way case,1 and the rank of the decomposition (number of
columns of ) must be equal to the correct rank. If the
latter is less than , then exact decomposition is impossible,
by definition of array rank. If the rank of the decomposition is
greater than , then the decomposition is not unique. In addi-
tion, note that increasing the number of dimensions decreases
the -rank requirement per dimension. In three dimensions,
it is necessary for uniqueness that the-rank of any matrix is
at least two. In four dimensions and beyond, even this is not
necessary: It is possible to have one matrix of-rank equal to
one and still have uniqueness. Regarding conditions that are
necessary for uniqueness, see also Theorem 2 in Section V.

III. ROADMAP OF CRB RESULTS

As mentioned before, although low-rank decomposition of
multidimensional arrays has been used as a data analysis tool in
a variety of disciplines, pertinent CRB results have been missing
from the literature. The parameters of interest for which the
CRB will be established are the elements of the unknown ma-
trices that are involved in the decomposition ( in the
three-way case).

In the Appendixes, we derive CRBs for low-rank decomposi-
tion of complex-parameter three-way arrays (Appendix A) and
complex-parameter four-way arrays (Appendix B), both in i.i.d.
complex circularly symmetric Gaussian noise. These are ap-
plicable, e.g., in diversity-combining applications in communi-
cations [22], [25]. In Appendix C, we consider the case of a
complex-parameter three-way array that exhibits Vandermonde
structure in one dimension. This is of interest in sensor array
processing applications [24], and it can be viewed as gener-
alizing corresponding results for the two-way case with Van-
dermonde structure in one dimension [27]. In Appendix D, we
consider the special case of real-parameter three-way arrays for

1Three-way array rank could be up tomin(IJ; JK; IK); see [15].

which certain simplifications are possible due to the fact that
the noise covariance matrix can be written in convenient closed
form and an alternative scalar computation approach can be
adopted. The real-parameter three-way case is the one that is
mostly encountered in applications of PARAFAC in other disci-
plines. Under the Gaussian assumption, the CRB will be block
diagonal in the noise and signal parameters. In the interest of
brevity, we therefore assume that the noise variance is known
throughout the derivations.

A delicate point regarding these CRBs is the inherent per-
mutation and scale ambiguity. For example, in the three-way
case (3), one can clearly reshuffle thecomponents and/or set

, , and such that

, , and remains unaffected. In other
words

for any permutation matrix and diagonal scaling matrices
, , such that . In fact,

low-rank decomposition of multidimensional arrays is unique
(under the sum of-ranks condition)up tothe above indetermi-
nacy, which is unresolvable but also mostly insignificant. Some
means of fixing permutation and scale should be agreed upon in
order to obtain a meaningful bound. A simple (but not the only)
way of doing this in the three-way case is to fix the first row of

and to (this takes care of scale ambiguity) and
further assume that the first row of is known and consists of
distinct elements (which subsequently resolves the permutation
ambiguity).2

Our convention is plausible in the context of antenna array
reception of DS-CDMA. Let

antenna array response (steering) matrix;
code matrix;
symbol matrix.

Since the first element of the antenna array simply serves as an
arbitrary frame of reference, the first row of can be assumed
to be a row vector of all ones, without loss of generality. Sim-
ilarly, the first row of can be assumed to be a row vector of
all ones (first chip of all users equal to one) without loss of gen-
erality. Then, the scale factor (propagation loss and phase shift
times reference antenna gain times first chip) for each user can
be absorbed in the corresponding column of the symbol ma-
trix . It then seems reasonable to assume that the first row
of consists of distinct elements, although considering it to
be known is less appealing in a blind setting. Note, however,
that this is just a way of technically fixing an inherently unre-
solvable ambiguity for the purpose of performance evaluation.
Permutation and scale-fixing conventions could be application
dependent and, indeed, could influence the final bound. What
is less restrictive in one application could be more restrictive in
another—we do not have a universal solution, but one could still
use the results in the Appendixes to get a head start in computing
the pertinent bounds under alternative conventions.

2It is not enough to assume that the first row ofA is known. The reason is
that scale ambiguity has to be fixed prior to resolving the permutation ambiguity;
without knowing which column is which, we cannot divide by the first element
because we do not know what this element is.
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Fig. 1. PARAFAC CRB: Varying sample size along one dimension (number
of rows ofC).

IV. DISCUSSION ANDILLUSTRATION OF CRB RESULTS

In this section, we illustrate the behavior of the CRBs derived
in the Appendixes. Throughout, the CRB is first normalized in
an element-wise fashion, i.e., each unknown parameter’s CRB is
divided by the corresponding parameter’s modulus square. The
average CRB of all the unknown parameters is then used as a
single performance measure. Therefore, instead of plotting the
trace of the CRB, we plot a weighted trace, with weights propor-
tional to the inverse modulus square of the respective parame-
ters. This measures average variance relative to modulus square
across all parameters of interest. Signal-to-noise ratio (SNR) is
defined as [cf. (4) and (8)]

SNR (three-way array)

SNR (four-way array)

Unless otherwise specified, the matrices, , and were ran-
domly drawn from an i.i.d. standard Gaussian distribution, and
the CRB is averaged over all the unknown parameters of all ma-
trices.

Fig. 1 is an illustration of the behavior of the CRB for
low-rank decomposition of a complex-parameter three-way
array (Appendix A) as the size of one dimension increases, with
SNR fixed at 10 dB. In this experiment, and are ,
whereas is augmented from to . Notice that
the number of parameters also increases with the sample size.
However, the number of equations (data points) increases faster
than the number of unknown parameters ( versus order of

, respectively). One would then intuitively expect
that the CRB should decrease with increasing sample size along
any dimension. Although this seems to be the trend, it is not
true in general. We have seen examples of datasets where the
average CRB may actually increase before decreasing again as
one adds rows to .

Fig. 2 illustrates the effect of adding an extra diversity dimen-
sion. The CRB for a three-way array (Appendix A) with

Fig. 2. CRB: Effect of extra diversity dimension.

Fig. 3. PARAFAC CRB: With versus without assuming Vandermonde
structure.

component matrices , , and is compared with the corre-
sponding bound for a four-way array (Appendix B) obtained by
augmenting the three-way model by adding another dimension
of size , , or . We have seen that higher dimen-
sionality leads to a relaxed uniqueness condition (Theorem 1 ).
Fig. 2 demonstrates that higher dimensionality also benefits in
terms of CRB.

In Fig. 3, we compare the CRB of Appendix A with that of
Appendix C for a given three-way array with Vandermonde
structure in one dimension. The plot shows average CRB of
the generators of the Vandermonde matrix. The bound in Ap-
pendix A ignores the fact that Vandermonde structure is present
and is therefore above the bound in Appendix C. Comparisons
of this kind can help gauge the performance margin that can
be gained by employing and exploiting additional model
structure—in this case, Vandermonde. An example could be
the choice of complex exponential (OFDMA-like) spreading
codes in the context of [25].

A quadrilinear model can always be viewed as a trilinear
model, i.e., in (8), let to obtain

. This “unfolding” into a lower dimensional model
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Fig. 4. PARAFAC CRB: Model viewed as trilinear versus quadrilinear.

ignores part of the model structure. Even if the lower dimen-
sional model is uniquely parameterized, the loss of structure
will result in a loss of statistical efficiency. This is illustrated
in Fig. 4, which plots the CRB in Appendix B for a quadrilinear
data model with , , , and all and the CRB in Ap-
pendix A corresponding to unfolding it into a trilinear model.
Notice that the difference is significant.

The bounds in Appendices A–D can be used to gauge at
the diversity-combining tradeoff for system design purposes.
As an example, consider a DS-CDMA system with
users, spread using Walsh–Hadamard codes of length
chips/symbol, and received at the base station using a ULA con-
sisting of antennas spaced half a wavelength apart. Col-
lect symbols worth of samples from the baseband out-
puts of the antenna elements sampled at the chip rate. As shown
in [25], the resulting data can be arranged into an
three-way array of rank , and hence, the steering vectors in

, spreading codes in , and transmitted symbols in can
all be blindly recovered. Now, suppose that one wishes to im-
prove blind estimation performance and that two options are
available: increase spreading, [going from to
chips/symbol (at the expense of doubling the bandwidth)] or
double the number of receive antennas in the ULA from to

(paying the cost of extra hardware). Aside from other con-
siderations, which of the two options is best performance-wise?
Using the CRB in Appendix C (notice that the steering vectors in

are Vandermonde, due to the ULA assumption), Fig. 5 shows
that for directions 20, 40 , 60 , and 80 relative to the array
broadside, it is best to double the number of antennas, rather
than the spreading gain. Note that the CRB in Fig. 5 is averaged
over 100 random realizations of the symbol matrix, and the
situation reverses for closely spaced directions, as expected. The
reason we average the CRB over random realizations ofis as
follows. Let denote the parameter vector to be estimated. Any
estimation algorithm that treatsas a deterministic unknown
is bounded by CRB pointwise in . Hence, the average per-
formance of any such algorithm over a collection of is
bounded by the average of the respective CRBs over. For a
large number of representativedrawn via Monte Carlo simu-
lation, such averages can be used to gauge the achievable per-

Fig. 5. PARAFAC CRB: CDMA diversity-combining tradeoff.

Fig. 6. PARAFAC CRB: performance differential when one matrix is known.

formance of estimation algorithms that treatas a deterministic
unknown.

In some instances, the signals along one of the diversity di-
mensions (one of the three matrices, , and ) may be
known. Examples include known spreading codes or estimated
signatures or training signals. One may then wonder how this
knowledge affects the estimation of the remaining unknowns.
Interestingly, the answer is oftennot much. Fig. 6 depicts the
average CRB for the free elements ofand when is as-
sumed known versus unknown. All three matrices are , and
the CRB curves are averaged over 1000 realizations of randomly
drawn , , and . The curves come closer for higher, , and

relative to . We conclude that there is often enough struc-
ture in the trilinear model itself so that knowledge of the signals
in one dimension does not significantly improve the estimation
of signals in the other dimensions.

In general, uniqueness neither implies nor is implied by a
finite CRB. A simple example in [1] can be used to clarify this.
Consider the estimation of parameterfrom the measurement

, where is a zero-mean, Gaussian random variable
of variance . The Fisher information is proportional to ,
which is 0 at , although is the only identifiable
value of . Hence, uniqueness does not imply a finite CRB. For
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Fig. 7. CRB behavior near nonidentifiability.

any , the Fisher information is nonzero, and hence, the
CRB is finite, whereas theseare not identifiable. Therefore,
uniqueness is not implied by a finite CRB. However, it is natural
to expect that as one moves closer to nonuniqueness, the CRB
should increase. This is the subject of Fig. 7. Letand be

matrices with full rank, and let

where . When , , and
, the model is unique according to (10). implies
, and hence, the sufficient condition (10) is violated:

. Fig. 7 depicts the behavior of the CRB
as approaches zero. Observe that the CRB remains stable for
a wide range of values and then increases sharply in the vicinity
of . This is consistent with practical experience involving
ALS applied to real data sets exhibiting near-collinearity [5].

V. NECESSARYUNIQUENESSCONDITIONS

Condition (10) is sufficient but not necessary for uniqueness.
When low-rank modeling is utilized as an exploratory design
tool, it is useful to havesimpletests that quickly rule out non-
identifiable models. This is the subject of this section.

Theorem 2: For , a necessary condition for unique-
ness of the model in (9) is

(11)

For , a necessary condition is

The result is further generalized for any: The Khatri–Rao
product of any leave-one-out selection of matrices from

must be of rank for the model in (9) to be
unique.

Proof: From (4), if , then

for any whose rows are in the null space of .
It follows that is not unique. Similarly, from (5) and (6), we
conclude that if or , then or cannot
be unique. For uniqueness of the model in (9), all three condi-
tions need to hold; hence, condition (11) follows. For the
case, consider (8). There are a total of four leave-one-out selec-
tions from , and the Khatri–Rao product of the
three selected matrices must be full rank for the left-out matrix
to be unique (recall that Khatri–Rao product rank is not affected
by the order in which the multiplications are carried out).

Remark 1: In order to see that the sufficient condition (10)
in Theorem 1 implies the necessary condition (11) in Theorem
2, consider (10) with , and note that for any ,
it holds that ; hence, (10) implies

(12)

which in turn implies

(13)

It has been shown in [26] that ;
thus, (13) yields , which implies . The
remaining two implications follow by symmetry of (9) and (10).

Remark 2: Testing whether the necessary condition is
valid is much simpler than checking the sufficient condition,
which involves -rank rather than rank. Checking the-rank
of a matrix involves sequentially checking all possible selec-
tions of columns ( going from to 2 or vice-versa) for
linear independence. In the worst case, the calculation of,

, and by singular value decomposition requires up to
floating-point operations

(flops), whereas the calculation of , , and
takes only flops.

The Khatri–Rao product can be viewed as a selection of
columns from the Kronecker product, whose rank is the product
of ranks of its constituent matrix factors. Hence

Therefore, requires , and we obtain the
following further simplified condition.

Corollary 1: For , a further simplified necessary con-
dition for uniqueness of the model in (9) is

(14)

The simplified condition (14) can also be generalized to higher
dimensions.

VI. M ULTILINEAR ALS PERFORMANCE

The principle of ALS can be used to fit low-rank models in
any dimension. A trilinear ALS (TALS) algorithm can be found
in [25], but the idea of using ALS to fit low-rank three-way
models goes back to Harshman [8]–[10]. The basic idea be-
hind ALS is simple: each time updateonematrix, using least
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Fig. 8. TALS performance vesus CRB. (a)A. (b)B. (c)C. (d) Average.

squares (LS)conditionedon previously obtained estimates for
the remaining matrices; proceed to update the other matrices;
repeat until convergence of the LS cost function (this is guaran-
teed for ALS algorithms, e.g., [25]). For example, quadrilinear
ALS (QALS) aims to

where is the noisy data matrix. Due to the complete
symmetry of the quadrilinear model [cf. (7)], the conditional
least square updates are

where , , , and denote running estimates of, , ,
and .

For zero-mean white (in all dimensions) Gaussian noise, ALS
yields maximum likelihood (ML) estimates, provided the global
minimum is reached. Under mild regularity conditions, ML is
asymptotically(in sample size) unbiased and asymptotically
achieves the CRB [12, Ch. 7]. For signal-in-noise problems,
ML also achieves the CRB for high-enough signal-to-noise
ratios [12, Ch. 7]. It therefore makes sense to compare trilinear
and quadrilinear ALS against the respective CRBs.

In all of our Monte Carlo results, ALS is randomly initialized
once per trial and then iterated until convergence. No reinitial-
izations are used.

Fig. 8 depicts simulation results comparing TALS perfor-
mance to the CRB for a unconstrained trilinear model. In this
simulation, , , and 200 Monte
Carlo trials per datum have been conducted. The lower right
plot presents average mean squared error (MSE) for all free

Fig. 9. QALS performance versus CRB. (a)A. (b)B. (c)G. (d)H.

Fig. 10. QALS performance versus CRB. Average ofA,B,G, andH.

model parameters versus trace(CRB) . The
remaining three plots present average MSE for the free elements
of , , and respectively, versus the corresponding bound.

Figs. 9 and 10 depict Monte Carlo simulation results com-
paring QALS performance to the CRB for a typical scenario. For
this simulation, , , and 800 Monte
Carlo trials per datum have been conducted. Fig. 9 plots the es-
timation MSE for the free elements of, , , and , respec-
tively, versus the corresponding bound. Fig. 10 presents average
MSE for all free model parameters versus the CRB. Observe
that both TALS and QALS remain close to the CRB for a wide
range of SNRs and reasonably small sample sizes in all dimen-
sions—but note that total sample size is the product of sample
sizes along the individual dimensions; hence, we have 8000
samples for the trilinear example in Fig. 8 and 1296 samples for
the more structured quadrilinear model in Figs. 9 and 10. These
are typical sample sizes in applications, wherein the number
of samples in one dimension may be related to spreading gain,
number of symbols collected, etc. [5], [25]. Total sample size is
what matters for the good asymptotic properties of ML to come
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into play, and this explains the good behavior of ALS, which
aims for the ML solution. Observe that the gap between ALS
and the CRB reduces quickly with increasing SNR (note that
the plots are in log-log scale). The reasons for the nonzero gap
at finite SNR are as follows.

• Practical experience [5] with trilinear ALS shows that the
global minimum is usually reached as long as the con-
stituent rank-one factors are not essentially collinear along
any dimension. Nevertheless, for finite SNR, there exist a
few inevitable bad runs, which hit a local minimum.

• Even if the right minimum is reached, scale and, more im-
portantly, permutation matching may fail due to residual
noise. This effect is particularly pronounced at low SNR.

• In practice, some prespecified tolerance threshold is used
to terminate the ALS iteration. In certain situations, con-
vergence can be relatively slow, which may lead to prema-
ture termination.

Even though an analytical verification of these findings would
be highly desirable from a theoretical standpoint, it seems to be
very difficult to carry through without making unrealistic as-
sumptions, due to the iterative nature of ALS. The above Monte
Carlo results are perhaps sufficient from an applications view-
point.

VII. CONCLUSION

Low-rank decomposition of multidimensional arrays (in
dimensions) has the remarkable property of uniqueness on

the basis of low-rank structure alone. It has found extensive
applications in diverse areas, including signal processing and
communications. This paper has contributed pertinent CRBs for
low-rank decomposition of 3-D and 4-D arrays. Aside from per-
formance evaluation, these can be used as design tools for diver-
sity tradeoff studies. Easy-to-check necessary uniqueness con-
ditions for low-rank decomposition of multidimensional arrays
have also been developed. Finally, the performance of ALS al-
gorithms that are commonly used to compute low-rank decom-
position of multidimensional arrays has been assessed relative
to the respective CRBs. It was demonstrated by means of Monte
Carlo simulation that for typical problem sizes, ALS stays close
to what is theoretically achievable performance-wise.

APPENDIX A
CRB FORLOW-RANK DECOMPOSITION OF3–D ARRAYS

Consider an three-way array with typical element

(15)

where is i.i.d. (in , and ) zero mean, circularly sym-
metric complex Gaussian noise, of variance. Unfolding as in
(4)–(6), define

(16)

(17)

(18)

where , , and are the corresponding noise matrices.
Therefore, we can write the likelihood function of in three
equivalent ways:

where denotes theth column of and similarly for and
.
As explained in Section III, a delicate point regarding the

CRB for the trilinear decomposition model is the inherent per-
mutation and scale ambiguity. To derive a meaningful CRB, we
assume that the first row of and is fixed (or normalized)
to (this takes care of scale ambiguity) and further
assume that the first row of is known and consists of distinct
elements (which subsequently resolves the permutation ambi-
guity). This way, the number of unknown complex parameters
is instead of . Similar to [3] and
[28], to simplify the CRB derivation, it is useful to introduce the
equivalent complex parameter vector

Let us write the log-likelihood function as

(19)

Then, the complex Fisher information matrix (FIM) is given by
(see, e.g., [18])

(20)

Taking partial derivatives of with respect to the unknown
parameters, we obtain

(21a)

(21b)

(21c)
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(21d)

(21e)

(21f)

where is the th unit coordinate vector.
Although the computation of the FIM may look cumbersome,

some simplifications are possible. Note that although is
independent in three dimensions, i.e.,

(22)

, , and are nevertheless correlated. Using the
fact that (e.g., cf. [27])

(23)

it can be shown that the FIM can be written as

(24)

where the matrix is of size
. Given this block diagonal structure, we need to compute

and invert the submatrix . Based on (22) and (23), it can be
shown that the elements of can be computed as

where the covariance matrix of and is given by
(25), shown at the bottom of the page. In (25), the row index and
column index of nonzero elements of the covariance matrix are
indicated explicitly. and
can be obtained similarly.

Furthermore, from (20) and (24), can be written as

with obvious notation. Let

(26)

Then

The CRB on the variance of any unbiased estimator of the
trilinear model (15) is the inverse of, which is given in terms
of

CRB CRB CRB
CRB CRB CRB
CRB CRB CRB

(27)

To find the CRB of the unknown elements of, we use the
following formula for the inverse of a partitioned Hermitian ma-
trix:

where . It easily follows that

CRB

...

...

...

...
(25)
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APPENDIX B
CRB FORLOW-RANK DECOMPOSITION OF4–D ARRAYS

Consider an array with typical element

(28)

for , , , ,
with . is i.i.d. (in , , , and )
zero mean, complex Gaussian noise of variance. Define ,

, , and as in Section II, and unfold in four equivalent
matrix representations:

(29)

(30)

(31)

(32)

Correspondingly, we can write the likelihood function in four
equivalent ways as

where denotes theth column of and similarly for ,
and . As mentioned in Section III, for the purpose of removing
sale and permutation ambiguity to obtain a meaningful bound,
we assume that the first row of , , , and are known.
Therefore, the unknown complex
parameter vector is

and the log-likelihood function is given by

The complex FIM is

(33)

The partial derivatives of with respect to the unknown pa-
rameters are given by

(34)

where is the th unit coordinate vector.
Similar to (24), the FIM in (33) can be written as

(35)

whose size is .
The elements of can be computed as in

(36a)

(36b)
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(36c)

(36d)

(36e)

(36f)

(36g)

(36h)

(36i)

(36j)

It is cumbersome to write out the covariance matrix of
and , but its computation can be done in the following
simple way. First, construct an auxiliary four-way arrayU and
fill it with integers from 1 to as

By data rearrangement, we can express this four-way array
in four different matrix forms, say, , ,

and corresponding to (29)–(32), re-
spectively. Now, to obtain , we can simply
compare and . If and contains
the same integer, then ; otherwise,

. In this way, we can easily obtain
all necessary covariance matrices.

The CRB on the variance of any unbiased estimator of the
quadrilinear model (28) is then given by the inverse of(35):

CRB

Further simplification can be achieved as in Appendix A but is
omitted here for brevity.

APPENDIX C
CRB FORLOW-RANK DECOMPOSITION OF3-D ARRAYS WITH

VANDERMONDE STRUCTURE IN ONE DIMENSION

Consider the three-way array in (15), and assume
without loss of generality that is Vandermonde:

...

(37)

The log-likelihood function is the same as (19), whereas the
complex parameter vector is given by

The partial derivatives of with respect to and are

The derivatives with respect to , , and are the
same as in (21b), (21c), (21e), and (21f). The remaining proce-
dures to obtain the CRB are similar to those in Appendix A and,
hence, are omitted for brevity.

APPENDIX D
CRB FOR REAL-PARAMETER LOW-RANK DECOMPOSITION OF

3-D ARRAYS

The real case yields simpler CRB expressions, due to the fact
that the noise covariance matrix can be written in convenient
closed form, and an alternative scalar computation approach can
be adopted. Consider the three-way array with
typical element

where is zero mean real-valued Gaussian i.i.d. in, , of
variance .

The likelihood function of is given by
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Thus, the log-likelihood function is

where

The FIM associated with the estimation of these parameters is
given by

(38)

First, we calculate the derivatives of with respect to ,
, and

(39)

(40)

(41)

From (39)–(41), we can obtain

Define the matrices

Then, it can be shown that the FIM in (38) is given by

(42)

where is an block diagonal matrix
containing replicas of , and , are con-
structed similarly, i.e.,

where denotes an identity matrix. ,
, and in (42) are given by (43)–(45), as follows:

...
...

... (43)

...
...

... (44)

...
...

... (45)

The CRB on the variance of any unbiased estimator is then
given by the inverse of (42), provided it exists.
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