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Cramér—Rao Lower Bounds for Low-Rank
Decomposition of Multidimensional Arrays
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Abstract—Unlike low-rank matrix decomposition, which is fact was illustrated by Cattell and rigorously established under

generically nonunique for rank greater than one, low-rank three-  jncreasingly milder conditions over a span of some 30 years by
and higher dimensional array decomposition is unique, provided various authors [8]-[10], [14], [15], [20], [21], [25]

that the array rank is lower than a certain bound, and the correct " ’ T . ’

number of components (equal to array rank) is sought in the Low-rank decomposition of multidimensional arrays has

decomposition. Parallel factor (PARAFAC) analysis is a common been used as as a data analysis tool in an unusual variety
name for low-rank decomposition of higher dimensional arrays. of disciplines, e.g., [2], [5], [6], [10], [14], and [16], to
This paper develops Cramér-Rao Bound (CRB) results for mention a few. More recently, it was shown to have exten-

low-rank decomposition of three- and four-dimensional (3-D and _. licati . . | ) d icati
4-D) arrays, illustrates the behavior of the resulting bounds, and Sive application In signal processing and communicatons,

compares alternating least squares algorithms that are commonly including blind multiuser detection in direct-sequence code-di-
used to compute such decompositions with the respective CRBs.vision multiple-access (DS-CDMA) communications [25],

Simple-to-check necessary conditions for a unique low-rank my|tiple-invariance sensor array processing [24], blind beam-
decomposition are also provided. forming in specular multipath [17], [26], and, in more general
Index Terms—Cramér-Rao bound, least squares method, ma- terms, blind diversity-combining in communications [22]. De-

trix decomposition, multidimensional signal processing. spite these wide-ranging applications, pertinent Cramér—Rao
bounds (CRBs) for low-rank decomposition of multidimen-
l. INTRODUCTION sional arrays have been missing from the literature. The first

. . . contribution of this paper is the development of CRBs for
OR matrices [t\No-d|menS|on_aI .(Z_D)_ otwo-way ar- low-rank decomposition of 3-D and four-dimensional (4-D)
rays], the Iqw-rank property in itself is not enough tOarrays. Complex model parameters and a complex circularly

gua_rgntee a unique da_tz:;\ model, and one _has to res?”s fhmetric white Gaussian noise model are assumed, but some

additional problem-specific structural properties to obtain

ecial cases are also considered due to their importance in

unique parameterization. Examples include orthogonality (Slfsplications: a 3-D array with Vandermonde structure in one
in singular value decomposition), Vandermonde, Toeplit imension, and the real-parameter 3-D case

or finite-alp_habet constraints. Notwithstanding t.he lack o A wide variety of algorithms have been developed for com-
inherent uniqueness, low-rank matrix decomposition plays g, jo\-rank decomposition in three and higher dimensions.

ke}ll_r:ole in moderfn siglrgal probcessing.d q in th These range from eigenvalue-type algebraic techniques [19],
_The concept of rank can be extended to arrays in three 95] to alternating least squares (ALS) algorithms [8]-[10]; see
higher dimensions in a natural way [14], [15]. Low-rank deco

25] for a readily available reference and [5] and [23] for a tuto-

E'ositir?n of tgreibdimednsiorl]ﬂal (3-D) arraﬁ/sl ]:/vas deg:ggﬁi ¥l overview. Among these possibilities, ALS is the workhorse
arshman [8}-{10] under the name parallel factor ( Lchnique that is mostly preferred in practice [5], [23]. Even

analysis and independently by Carroll and Chang [6] under t ugh ALS has been used extensively in this context and it has

name cgnomcal o!ecpmposﬂmn (CANDECOMP)’ bundl.ng.on r%any desirable properties, its performance has not previously
inconspicuous principle pr(_)posed in the factor analysis liter een measured relative to the CRB. This is the second contribu-
ture by Cattell [7]. Interestingly, thesen develo.pmenfcs actua %n of this paper: putting ALS to the test versus the CRB and
preceded the fundamental work on higher dimensional arr%rifying that, indeed, the performance of ALS comes close to

rank [14], [15]. Quite unlike low-rank matrix decompositiony, . cpp This means that the CRB can be used to predict the av-

which is generically nonunique for any rank greater than Ongr'age behavior of ALS, which in turn makes the CRB a valuable
low-rank, 3-D array decomposition is essentially unique for ’

inaful £l h ranks 114 4 the situati &‘esign tool. For example, in the context of DS-CDMA com-

metanlllngy range o h‘?Wk;e”Z%’g ranks [21]' Ef‘l_rr'] € sl Llj(aé unications [25] and diversity-combining [22] in more gen-
actually improves in higher dimensions [21]. This remarka al terms, the CRB allows quantitative evaluation of the di-
versity tradeoff for a specified performance. The real-parameter
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pertinent CRBs (associated derivations are deferred to timénimum number of rank-one (three-way) components needed

Appendices). These bounds are discussed and illustratedamlecompos&.

Section V. Simple-to-check necessary uniqueness condition®efine anl x F matrix A with typical elementA(¢, f) :=

are developed in Section V. Multilinear ALS is compared with,, ¢, J x I matrix B with B(j, f) := b, s, K x F matrix C

the CRB in Section VI. Conclusions are drawn in Section VIIwith C(k, f) := ¢, andJ x K matricesX; with X;(j, k) :=
Some notation conventions that will be used in this papet,;,.- Compact matrix representations of the model in (3) are

follow. made possible by employing the Khatri-Rao matrix product.
AT Transpose OA. For example
A* Complex conjugate QA. Xi_, BD, (A)
AH Conjugate transpose . Xies BD,(A)
A(4) ith column of A. XUDE) . | T . ctT=(AoB)Ct.
a; ith column of AT (al is theith row of A). : :
A®B Kronecker product oA andB. Xi=1 BD;(A)
AcB Khatri-R | -wise K k duct . - . .
© N :nr:jBao (column-wise Kronecker) produc OtI’he superscript’I* %) means that the matrix is of sizd x K

and that thej-index (J goes first in the product ) runs faster

A¢B the Hadamard (element-wise) product®ofindB: than thei-index along its rows. By symmetry

(A < B)i,j = Ai,jBi,j;

D;(A) Diagonal matrix constructed out of thith row of XIExT) .= (C» A)BT (5)
A.
Sij Kronecker deltas; ; = 1 wheni = j,ands; ; =0 and
wheni # j, ¢ andj are integers. (KIxI) ._ T
|- 1lF¢ Frobenius norm. X =(BoC)A" ®)
()f Matrix pseudo-inverse. Next, consider ad x J x K x L 4-D arrayX with typical
element
II. MULTIDIMENSIONAL LOW-RANK MODELING "
Consider anl x J matrix X. ranKX) = F if and only if Zigka =Y b ror phug @)
X can be written as a sum df but no less thaF' rank-one f=1

matrices (vector outer products) fori=1,....0,j=1,....J,k=1,...,K,andl =1,..., L.

(1) Define aK x F matrix G with typical elementG(k, f) :=

gr,y and L x I matrix H with H(l, f) := hy ¢. Similar to the
three-way case, the Khatri—-Rao product can be used to cast the
model in (7) in matrix form. For example

X=ABT=A()BT(1) +---+ A(F)BY(F)

whereA is I x F', andB is.J x I. Note that we may assume
without loss of generality that the columnsAfandB are lin-
early independent; otherwise, at least one of fheank-one
components can be absorbed in the others. In genErat

min(Z, /), butif #* < min(Z, J), thenX = AB" constitutes a 1. khatri-Rao product has the prope( © G) © A —
low-rank decomposition aX. Letz; ; denote thTQZ:’j)th €Y 1o (G ® A) [13]; in addition, the order of Khatri—Rao multi-
of X. A scalar view of the relationshik = AB" is plications only affects the order of rows in the final result [13].
F In particular, rank is not affected by the order in which the mul-
Ti; = Z ai b ¢ (2) tiplications are carri_ed out. _
= Further generalizing t&v dimensions

XUKIX) .~ (Ho G © A)BT. (8)

forall¢i =1,...,I,andj = 1,...,J, with obvious notation. FN

Observe that; ; is written as a sum of double products, i.e., it Liy,oin = Z H ag:,)f ©)
admits anf’-component bilinear decomposition f=ln=1
Next, consider ad x J x K 3-D (also known athree-way ) )
array X with typical elementz; ; ,,, and theF” component tri- fori, = 1,...., L, n = 1,...,N, whereq, ', € C. Upon
linear decomposition definingZ,, x F' matricesA (™ with A" (i,,, f) := agf)f, many
. matrix representations are possible, e.g., ’
Tijk = Z i, fbj g ) X (B InxT) (A(N) o @A(Q)) (A(l))T_
f=1

foralli=1,...,7,j=1,...,J,andk = 1,..., K. Equation ,

(3) expresses the three-way ariyas a sum off’ rank-one A Uniqueness

three-way factors, each one of which is the “outer product” of Definition 1: The k-rank of a matrixA € C/*F (which is
three vectors. Analogous to the definition of matrix (two-wagenoted byka) is » if and only if everyr columns of A are
array) rank, the rank of a three-way arrXyis defined as the linearly independent and eithé&r has» columns orA contains
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a set ofr + 1 linearly dependent columns. Note thatank is which certain simplifications are possible due to the fact that
always less than or equal to radly < ra := rank(A) < the noise covariance matrix can be written in convenient closed
min(I, F), ¥V A. k-rank stands foKruskatrank [14]; the term form and an alternative scalar computation approach can be
was coined by Harshman and Lundy [11]. adopted. The real-parameter three-way case is the one that is
Theorem 1: (Sufficient condition for uniqueness of low-ranknostly encountered in applications of PARAFAC in other disci-
decomposition ofV-way arrays[21], [22]; cf. [14] for a basic plines. Under the Gaussian assumption, the CRB will be block
precursor result, and [25] for its complex counterpart). Considgiagonal in the noise and signal parameters. In the interest of
the F-componentV-way array given in (9), and suppose that ibrevity, we therefore assume that the noise variance is known

is irreducible (i.e., the rank of th&-way array isF). If throughout the derivations.
A delicate point regarding these CRBs is the inherent per-

N mutation and scale ambiguity. For example, in the three-way

> kaon Z2F + (N —1) (10) case (3), one can clearly reshuffle theeomponents and/or set

n=1 C_L%f) I(b))\gc((l))a7‘,7f, Eﬁf = )\Scb)bj7f, andEkJ = )\Scc)CkJ such that
then theN-way arrayz;, i\ ,in = 1,.... Ly, n=1,....N AYIAYIAY = LY f, andz; ;, remains unaffected. In other
has unique rank-on#&’-way factors words

: (A,B,C) (AHA(“),BHA(”),CHA(C))
ag:,)f’ f=1...,F.
n=1 for any permutation matridI and diagonal scaling matrices

A@ A® AL sych thatA@WABWAE) = TIp, p. In fact,

Note that the three-way array radk must be low enough |ow-rank decomposition of multidimensional arrays is unique
relative to the maximum possible sum dfranks, €.9., (under the sum of-ranks conditionip tothe above indetermi-
min(/, F) + min(J, F) + min(K, F)) > 2F + 2 in the pacy, which is unresolvable but also mostly insignificant. Some
three-way caseand the rank of the decomposition (number gfyeans of fixing permutation and scale should be agreed upon in
columns ofA, B, C) must be equal to the correct rafik If the  order to obtain a meaningful bound. A simple (but not the only)
latter is less thar¥”, then exact decomposition is impossibleyay of doing this in the three-way case is to fix the first row of
by definition of array rank. If the rank of the decomposition iy 53ndB to [1...1],, - (this takes care of scale ambiguity) and
greater thart”, then the decomposition is not unique. In addifyrther assume that the first row 6 is known and consists of
tion, note that increasing the number of dimensions decreaggginct elements (which subsequently resolves the permutation
the k-rank requirement per dimension. In three dimension§mbiguity)g
it is necessary for uniqueness that theank of any matrix is  our convention is plausible in the context of antenna array
at least two. In four dimensions and beyond, even this is ”I‘étception of DS-CDMA. Let
necessary: It is possible to have one matritafink equalto A antenna array response (steering) matrix;
one and still have uniqueness. Regarding conditions that arq3  ¢ode matrix:
necessary for uniqueness, see also Theorem 2 in Section V. ¢ symbol matrix.

Since the first element of the antenna array simply serves as an
[l. ROADMAP OF CRB RESULTS arbitrary frame of reference, the first row Af can be assumed

As mentioned before, although low-rank decomposition & be a row vector of all ones, without loss of generality. Sim-
multidimensional arrays has been used as a data analysis todAHy; the first row of B can be assumed to be a row vector of
avariety of disciplines, pertinent CRB results have been missiatyones (first chip of all users equal to one) without loss of gen-
from the literature. The parameters of interest for which trf@lity. Then, the scale factor (propagation loss and phase shift
CRB will be established are the elements of the unknown niines reference antenna gain times first chip) for each user can
trices that are involved in the decompositich,®, C in the De absorbed in the corresponding column of the symbol ma-
three-way case). trix C. It then seems reasonable to assume that the first row

In the Appendixes, we derive CRBs for low-rank decompos‘P—f C consists of distinct elements, although considering it to
tion of complex-parameter three-way arrays (Appendix A) ae known is less appealing in a blind setting. Note, however,
complex-parameter four-way arrays (Appendix B), both in i.i.dhat this is just a way of technically fixing an inherently unre-
complex circularly symmetric Gaussian noise. These are a;@vable ambiguity for the purpose of performance evaluation.
plicable, e.g., in diversity-combining applications in commun£ ermutation and.scale—fixing cqnventions cou_ld be application
cations [22], [25]. In Appendix C, we consider the case of @ependent and, indeed, could influence the final bound. What
complex-parameter three-way array that exhibits Vvandermonigdess restrictive in one application could be more restrictive in
structure in one dimension. This is of interest in sensor arr@pother—we do not have a universal solution, but one could still
processing applications [24], and it can be viewed as gendg€ the results in the Appendixes to get a head startin computing
alizing corresponding results for the two-way case with Vade pertinent bounds under alternative conventions.
dermonde structure in one dimension [27]. In Appendix D, wezy g ot enough to assume that the first rowAfis known. The reason is

consider the special case of real-parameter three-way arraysfatscale ambiguity has to be fixed prior to resolving the permutation ambiguity;
without knowing which column is which, we cannot divide by the first element
IThree-way array rank could be upitein (7.7, JK, TK); see [15]. because we do not know what this element is.
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—e— Quadrilinear (2) |
—— Quadrilinear (4)
—— Quadrilinear (8)
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Number of rows in C
Fig. 2. CRB: Effect of extra diversity dimension.
Fig. 1. PARAFAC CRB: Varying sample size along one dimension (number
of rows of C).
10° : : ——
— Unconstrained PARAFAC CRB
IV. DISCUSSION ANDILLUSTRATION OF CRB RESULTS - - - PARAFAG/Vandermonde CRB

In this section, we illustrate the behavior of the CRBs derived 44+
in the Appendixes. Throughout, the CRB is first normalized in
an element-wise fashion, i.e., each unknown parameter’'s CRB is
divided by the corresponding parameter’'s modulus square. The, ;2|
average CRB of all the unknown parameters is then used as i
single performance measure. Therefore, instead of plotting the
trace of the CRB, we plot a weighted trace, with weights propor-

. . ) 10
tional to the inverse modulus square of the respective parame
ters. This measures average variance relative to modulus squai
across all parameters of interest. Signal-to-noise ratio (SNR) is -]
defined as [cf. (4) and (8)] . , ‘ , L
0 5 10 15 20 25 30
XU o
SNR=10log;, T 1JKo? (three-way array) Fig. 3. PARAFAC CRB: With versus without assuming Vandermonde
||X([[(L><J) ||%‘ structure.
SNR=10log;; ———————* (four-way arra
210 TTK Lo2 ( y y)

component matriceA, B, andC is compared with the corre-

Unless otherwise specified, the matricesB, andC were ran- sponding bound for a four-way array (Appendix B) obtained by
domly drawn from an i.i.d. standard Gaussian distribution, a@digmenting the three-way model by adding another dimension
the CRB is averaged over all the unknown parameters of all maE-size2 x 3, 4 x 3, or8 x 3. We have seen that higher dimen-
trices. sionality leads to a relaxed uniqueness condition (Theorem 1).

Fig. 1 is an illustration of the behavior of the CRB forFig. 2 demonstrates that higher dimensionality also benefits in
low-rank decomposition of a complex-parameter three-wagrms of CRB.
array (Appendix A) as the size of one dimension increases, within Fig. 3, we compare the CRB of Appendix A with that of
SNR fixed at 10 dB. In this experimenA andB are4 x 3, Appendix C for a given three-way array with Vandermonde
whereasC is augmented froml x 3 to 26 x 3. Notice that structure in one dimension. The plot shows average CRB of
the number of parameters also increases with the sample sibe.generators of the Vandermonde matrix. The bound in Ap-
However, the number of equations (data points) increases fagtendix A ignores the fact that Vandermonde structure is present
than the number of unknown parametefs K versus order of and is therefore above the bound in Appendix C. Comparisons
(I+J+ K)F, respectively). One would then intuitively expecbf this kind can help gauge the performance margin that can
that the CRB should decrease with increasing sample size altneg gained by employing and exploiting additional model
any dimension. Although this seems to be the trend, it is nstructure—in this case, Vandermonde. An example could be
true in general. We have seen examples of datasets wheretltigechoice of complex exponential (OFDMA-like) spreading
average CRB may actually increase before decreasing agaircades in the context of [25].
one adds rows te. A quadrilinear model can always be viewed as a trilinear

Fig. 2 illustrates the effect of adding an extra diversity dimemodel, i.e., in (8), leiC = H ® G to obtainXEKLxJ) —
sion. The CRB for a three-way array (Appendix A) withx 3 (C ® A)B™. This “unfolding” into a lower dimensional model
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Fig. 4. PARAFAC CRB: Model viewed as trilinear versus quadrilinear. Fig. 5. PARAFAC CRB: CDMA diversity-combining tradeoff.

: : : — Noneisk
ignores part of the model structure. Even if the lower dimen- ;P Bk

sional model is uniquely parameterized, the loss of structure 1008

will result in a loss of statistical efficiency. This is illustrated ~2

in Fig. 4, which plots the CRB in Appendix B for a quadrilinear 2

data model withA, B, G, andH all 4 x 3 and the CRB in Ap- o'l

pendix A corresponding to unfolding it into a trilinear model. T~

Notice that the difference is significant. 5 S~
The bounds in Appendices A-D can be used to gauge a hN

the diversity-combining tradeoff for system design purposes. 42| hN

As an example, consider a DS-CDMA system with= 4 AN

users, spread using Walsh—Hadamard codes of lehgth 8 AN

chips/symbol, and received at the base station using a ULA con: N

sisting of/ = 2 antennas spaced half a wavelength apart. Col- 1g°® \ . — . -

lect K = 8 symbols worth of samples from the baseband out- 0 5 10 S1N5R 20 2 %0

puts of the antenna elements sampled at the chip rate. As shown

in [25], the resulting data can be arranged intalar .J x K  Fig. 6. PARAFAC CRB: performance differential when one matrix is known.

three-way array of ranl’, and hence, the steering vectors in

A, spreading codes iB, and transmitted symbols i@ can formance of estimation algorithms that tréats a deterministic

all be blindly recovered. Now, suppose that one wishes to imaknown.

prove blind estimation performance and that two options areln some instances, the signals along one of the diversity di-

available: increase spreading, [going from= 8 to J = 16 mensions (one of the three matricas B, and C) may be

chips/symbol (at the expense of doubling the bandwidth)] &nown. Examples include known spreading codes or estimated

double the number of receive antennasin the ULAfilosm 2to  signatures or training signals. One may then wonder how this

I = 4 (paying the cost of extra hardware). Aside from other colkhowledge affects the estimation of the remaining unknowns.

siderations, which of the two options is best performance-wiskferestingly, the answer is oftarot much Fig. 6 depicts the

Using the CRB in Appendix C (notice that the steering vectors average CRB for the free elementsAafandC whenB is as-

A are Vandermonde, due to the ULA assumption), Fig. 5 showsmed known versus unknown. All three matricestaxel, and

that for directions 29, 40°, 60°, and 80 relative to the array the CRB curves are averaged over 1000 realizations of randomly

broadside, it is best to double the number of antennas, ratdeawnA., B, andC. The curves come closer for highker/, and

than the spreading gain. Note that the CRB in Fig. 5 is averag&drelative toF". We conclude that there is often enough struc-

over 100 random realizations of the symbol maftixand the ture in the trilinear model itself so that knowledge of the signals

situation reverses for closely spaced directions, as expected. rhene dimension does not significantly improve the estimation

reason we average the CRB over random realizatio&sisfas of signals in the other dimensions.

follows. Leté denote the parameter vector to be estimated. AnyIn general, uniqueness neither implies nor is implied by a

estimation algorithm that treatsas a deterministic unknown finite CRB. A simple example in [1] can be used to clarify this.

is bounded by CRB®) pointwise inf. Hence, the average per-Consider the estimation of parametefrom the measurement

formance of any such algorithm over a collectiondoE © is y = z* +n, wheren is a zero-mean, Gaussian random variable

bounded by the average of the respective CRBs 6uefor a of variances2. The Fisher information is proportional i3 /2,

large number of representatidedrawn via Monte Carlo simu- which is 0 atz = 0, althoughx = 0 is the only identifiable

lation, such averages can be used to gauge the achievable y&ze ofz. Hence, uniqueness does not imply a finite CRB. For
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Proof: From (4), ifracss < F|, then
o[ 1 XK = (A®B)CT = (A®B) (CT +N7)

foranyN € C5*F whose rows are in the null spaceAf> B.
1072k | It follows that C is not unique. Similarly, from (5) and (6), we

© conclude that iffcoa < F orreac < F, thenB or A cannot
) be unique. For uniqueness of the model in (9), all three condi-
107k tions need to hold; hence, condition (11) follows. ForMe- 4
case, consider (8). There are a total of four leave-one-out selec-
10l ] tions from{A, B, G,H}, and the Khatri-Rao product of the

three selected matrices must be full rank for the left-out matrix
to be unique (recall that Khatri-Rao product rank is not affected
1078 . . . . by the order in which the multiplications are carried out).m
0 02 04 08 08 ! Remark 1: In order to see that the sufficient condition (10)
in Theorem 1 implies the necessary condition (11) in Theorem

Fig. 7. CRB behavior near nonidentifiability. 2, consider (10) withV = 3, and note that for an¢ € CX*F
it holds thatkc < r¢ < min(K, F) < F; hence, (10) implies
anyx # 0, the Fisher information is nonzero, and hence, the ki + kg > F +2 (12)

CRB is finite, whereas these are not identifiable. Therefore,

uniqueness is notimplied by a finite CRB. However, itis naturglhich in turn implies

to expect that as one moves closer to nonunigueness, the CRB

should increase. This is the subject of Fig. 7. keindB be min(ka +kg — 1,F) = I (13)

3 x 2 matrices with fullk rank, and let It has been shown in [26] théis o > min(ka + ks — 1, F);

thus, (13) yieldscacos = £, which impliesracp = £. The
C = {1 +v=1 0} remaining two implications follow by symmetry of (9) and (10).
1+ V=T Remark 2:Testing whether the necessary condition is
valid is much simpler than checking the sufficient condition,
wheree € [0, 1]. Whene = 1, k¢ = 2, andka + ks + kc = which involvesk-rank rather than rank. Checking therank
2F + 2, the model is unique according to (1@)= 0 implies of a matrix involves sequentially checking all possible selec-
kc = 0, and hence, the sufficient condition (10) is violatedions of n columns ¢ going from F' to 2 or vice-versa) for
ka +kB+kc < 2F+42. Fig. 7 depicts the behavior of the CRBlinear independence. In the worst case, the calculatioiof
ase approaches zero. Observe that the CRB remains stable#gr, and k- by singular value decomposition requires up to
awide range of values and then increases sharply in the viciniby( 2" —2F(F + 1)(I + J + K)) floating-point operations
of e = 0. This is consistent with practical experience involvingflops), whereas the calculation ek s, rceca, andreec
ALS applied to real data sets exhibiting near-collinearity [5]. takes onlyO ((3F +I1J+JK + IK)FQ) flops.
The Khatri-Rao product can be viewed as a selection of
V. NECESSARYUNIQUENESSCONDITIONS columns from the Kronecker product, whose rank is the product

. . - . of ranks of its constituent matrix factors. Hence
Condition (10) is sufficient but not necessary for uniqueness.

When low-rank modeling is utilized as an exploratory design kaoB < 7TacB < TAGB = TATB.
tool, it is useful to haveimpletests that quickly rule out non- ) - ) .
identifiable models. This is the subject of this section. Thereforekass = F'requiresrarg > F', and we obtain the

Theorem 2:For N = 3, a necessary condition for uniquefollowing further simplified condition.
ness of the model in (9) is Corollary 1: For N = 3, a further simplified necessary con-

dition for uniqueness of the model in (9) is
min(racs; 7coa, TBoc) = F. (11) min(rars,rcra,rsre) > F. (14)

For N = 4, a necessary condition is ghe smpllfled condition (14) can also be generalized to higher
imensions.

min(rBeGeA, "GOHEB, THOAGG, TAOBoH) = F. VI. MULTILINEAR ALS PERFORMANCE

The principle of ALS can be used to fit low-rank models in
The result is further generalized for afy: The Khatri-Rao any dimension. A trilinear ALS (TALS) algorithm can be found
product of any leave-one-out selection of matrices from [25], but the idea of using ALS to fit low-rank three-way
{A<">}i\/‘=1 must be of rankF for the model in (9) to be models goes back to Harshman [8]-[10]. The basic idea be-
unique. hind ALS is simple: each time updatame matrix, using least
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107 10 10
— TALS — QALS N — QALS
RN 10° T 10 AN
-3 BN AN RN
10 \\\ 10-3 \\\ 10-3 \\\
10™ AN T N
NN 107 ™ 0™
5 ~
0 1o 20 30 5 10 15 20 25 30 5 10 15 20 25 30
(o) (@) (b)
107 10 QALS 10" QALS
107%™ 107 T 10°% AN
10_3 \\\ 10-3 \\\\ 10‘3 \\\\
4 N o > ™ B
10 ™ 107 N 107 ]
10-50 10 20 30 5 10 15 20 25 30 5 10 15 20 25 30
(d) (c) (d)
Fig. 8. TALS performance vesus CRB. (&) (b) B. (c) C. (d) Average. Fig. 9. QALS performance versus CRB. @) (b) B. (c) G. (d) H.
—1
squares (LSgonditionedon previously obtained estimates for 10 — QALS
the remaining matrices; proceed to update the other matrices ---CRB
repeat until convergence of the LS cost function (this is guaran- BN
teed for ALS algorithms, e.g., [25]). For example, quadrilinear 1072k RN
ALS (QALS) aims to
N 2 RN
min HX(H‘LX‘])—(H@G@A)BTH AN
AB,GH F BN
, 107 RIS
whereX /X 7xJ) is the noisy data matrix. Due to the complete BN
symmetry of the quadrilinear model [cf. (7)], the conditional NN
least square updates are RIS
_4 ~ 4
. . . 1t h 10 °F
AT — [G oBo H} X(LIKXD)
) T . . . .
T TKLxJ 5 10 15 20 25 30
B :[H@G@A} XK ) SNR
~ X« N LT~ -
GT = [A oHO B} X LIXK) Fig. 10. QALS performance versus CRB. AverageAafB, G, andH.
. . o .
H' = [B ®A® G} X(KIIXL) model parameters versus trace(CRB)+ J + K — 3)F. The

remaining three plots present average MSE for the free elements

whereA, B, G, andH denote running estimates &f, B, G, of A, B, andC respectively, versus the corresponding bound.
andH. Figs. 9 and 10 depict Monte Carlo simulation results com-

For zero-mean white (in all dimensions) Gaussian noise, Alffairing QALS performance to the CRB for a typical scenario. For
yields maximum likelihood (ML) estimates, provided the globahis simulation# = 5,1 = J = K = L = 6, and 800 Monte
minimum is reached. Under mild regularity conditions, ML iarlo trials per datum have been conducted. Fig. 9 plots the es-
asymptotically(in sample size) unbiased and asymptoticalliimation MSE for the free elements &f, B, G, andH, respec-
achieves the CRB [12, Ch. 7]. For signal-in-noise problemsyely, versus the corresponding bound. Fig. 10 presents average
ML also achieves the CRB for high-enough signal-to-noiddSE for all free model parameters versus the CRB. Observe
ratios [12, Ch. 7]. It therefore makes sense to compare trilinghat both TALS and QALS remain close to the CRB for a wide
and quadrilinear ALS against the respective CRBs. range of SNRs and reasonably small sample sizes in all dimen-

In all of our Monte Carlo results, ALS is randomly initializedsions—but note that total sample size is the product of sample
once per trial and then iterated until convergence. No reinitiagizes along the individual dimensions; hence, we have 8000
izations are used. samples for the trilinear example in Fig. 8 and 1296 samples for

Fig. 8 depicts simulation results comparing TALS perforthe more structured quadrilinear model in Figs. 9 and 10. These
mance to the CRB for a unconstrained trilinear model. In thége typical sample sizes in applications, wherein the number
simulation,” = 3, = J = K = 20, and 200 Monte of samples in one dimension may be related to spreading gain,
Carlo trials per datum have been conducted. The lower riglimber of symbols collected, etc. [5], [25]. Total sample size is
plot presents average mean squared error (MSE) for all frelat matters for the good asymptotic properties of ML to come
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into play, and this explains the good behavior of ALS, whictvhereN,, N5, andIN3 are the corresponding noise matrices.
aims for the ML solution. Observe that the gap between ALBherefore, we can write the likelihood function &f in three
and the CRB reduces quickly with increasing SNR (note thatuivalent ways:

the plots are in log-log scale). The reasons for the nonzero gap

at finite SNR are as follows. 1 14 ‘ )

« Practical experience [5] with trilinear ALS shows that thé“(X) " (ro2) 7K P {_E Z 1X1(2) = (B © Cay| }
global minimum is usually reached as long as the con- =t
stituent rank-one factors are not essentially collinear along 1 1 & . 9
any dimension. Nevertheless, for finite SNR, there exista = (;;52)7/K Py T2 Z 1X2(7) = (C oAby
few inevitable bad runs, which hit a local minimum. =t

» Even if the right minimum is reached, scale and, more im- 1 K )
portantly, permutation matching may fail due to residual :W Py T2 X3(k) — (A © Bey|
noise. This effect is particularly pronounced at low SNR. k=1

* In practice, some prespecified tolerance threshold is use

) ; T imi .
to terminate the ALS iteration. In certain situations, Conv_vﬂereaz denotes théth column ofA™ and similarly forb; and

. . Cr
vergence can be relatively slow, which may lead to prema* . . . . . .
9 y y P As explained in Section lll, a delicate point regarding the

ture termination. " o . )
, L . CRB for the trilinear decomposition model is the inherent per-
Eventhough an analytical verification of these findings Wou%utation and scale ambiguity. To derive a meaningful CRB, we

be highly desirable from a theoretical standpoint, it Seems 10 heg\me that the first row of andB is fixed (or normalized)
very d.|ff|cult to carry t.hrough without making unrealistic asy, [1---1],, p (this takes care of scale ambiguity) and further
sumptions, due to the iterative nature of ALS. The above Monigqme that the first row & is known and consists of distinct
Carlo results are perhaps sufficient from an applications vieWements (which subsequently resolves the permutation ambi-
point. guity). This way, the number of unknown complex parameters
is(I+.J+K-3)Finstead of { +.J + K)F'. Similar to [3] and

VIl. CONCLUSION [28], to simplify the CRB derivation, it is useful to introduce the

equivalentl x 2(1 + J + K — 3)F complex parameter vector

Low-rank decomposition of multidimensional arraysfin>
3 dimensions) has the remarkable property of uniqueness on
the basis of low-rank structure alone. It has found extensive? = [a;f, ,a7,by,. by el kLA, ,cﬁr] .
applications in diverse areas, including signal processing and
communications. This paper has contributed pertinent CRBs it us write the log-likelihood function a&8) = InL(X)
low-rank decomposition of 3-D and 4-D arrays. Aside from per-

formance evaluation, these can be used as design tools for diver- 9 1< . 9
sity tradeoff studies. Easy-to-check necessary uniqueness cdr 0) = — IIKln (r0%) — -2 Z 1X1(2) — (B © Cay|
ditions for low-rank decomposition of multidimensional arrays Zjl
have also been developed. Finally, the performance of ALS al- 2 1 . 2
: =—TJKI - — Xo(7) —(C® A)b;
gorithms that are commonly used to compute low-rank decom- n(m ) 2 ; IX2(5) = (C oAby
position of multidimensional arrays has been assessed relative ! X
to the respective CRBs. It was demonstrated by means of Monte  _ _ 17Kl (WO_Q) 1 Z IX3(k) — (A ®B)ex|?
Carlo simulation that for typical problem sizes, ALS stays close 2 — '
to what is theoretically achievable performance-wise.
19)
APPENDIX A Then, the complex Fisher information matrix (FIM) is given by
CRB FOR LoOW-RANK DECOMPOSITION OF3—D ARRAYS (see, e.g., [18))
Consider ad x.J x K three-way arraX with typical element ) - )
af(o afo
Q) =E .
i ) {( ) (% )} (20)
Tijx = 3 aigbjpenp+ i (15)
f=1 Taking partial derivatives of (#) with respect to the unknown

L Lo . parameters, we obtain
wheren; ; i is i.i.d. (in4, j, andk) zero mean, circularly sym-

metric complex Gaussian noise, of variaade Unfolding as in of(@) 1 ) -
(4)—(6), define Bai s =3 (X1(i) —(Bo®C)a;) (B®Cles (21a)
of) 1 : H
X; =(BoC)AT + Ny, :KJx1I (16) b, o (X2(j) —(CO A)b;)" (CO Aey (21b)
Js
Xy =(COA)B" + Ny, :IK xJ (17) afe) 1 .
X3 =(AO®B)C"+ N3, : JIxK (18) ey, f o (Xs(k) — (A ©Ber)” (A © Bley (21¢)
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8aj7fl 8ck7f2 O’4

2f(0) _ <af<o>>* 210) (AGB)ey,

b3 9bj, ¢ oo
of(6) _ (2£(0)\" , E{_a;( )acfk(f) } I%e?‘l (CoA)E (NN ()
acj, B <3Ck,f ) (21f) 3.1 2

. (A O] B)efz .

Whelrf]ef isht?]efth unit cqordl?a;e vector. look b where the covariance matrix @1 (:) andN2(j) is given by
Alt oug t N cpmputatlon 0 .t eFIM mar)]/ OOI ﬁum hers_’omE(QS), shown at the bottom of the page. In (25), the row index and
some simplifications are possible. Note that although. is column index of nonzero elements of the covariance matrix are

independent in three dimensions, i.e., indicated explicitly. E{N, ({)NY(k)} and E{N(j)NH(k)}
can be obtained similarly.
E{niy j ki, o ko b = Giria6is o Oy ke (22)  Furthermore, from (20) and (24% can be written as

‘I’aa ‘I’ab ‘I’ac
vl 9, @,
258 ‘Illl){c ¥

N, (¢), N2(y), andN3 (%) are nevertheless correlated. Using the
fact that (e.g., cf. [27]) U=

E{niy o iz o o} = EANE, g0, gy k3 =0 (23) with obvious notation. Let

it can be shown that the FIM can be written as T, = {ilﬁb ibc} L = [T Pl (26)
be ce
_|¥ 0 Then
o=y o] (24)

_ ‘I’a,a, ‘I’Q
¥ = [ - ‘PJ .

where the matrid¥ is of size(/ + J+ K —-3)F x (I +J+ K —
3)F. Given this block diagonal structure, we need to compute The CRB on the variance of any unbiased estimator of the
and invert the submatri®. Based on (22) and (23), it can betrilinear model (15) is the inverse 6%, which is given in terms
shown that the elements & can be computed as of

. { 01(6) 01(0) } = el (Bo OB o Ceys

aa; Nl aaiz f2

CRB", CRB,, CRB,,
CRB! CRB]. CRB.

=¥ 1 (27)

1,22

[CRB,,,,,, CRB,,; CRB,.

To find the CRB of the unknown elements Af, we use the
following formula for the inverse of a partitioned Hermitian ma-

E {m af(o) :%e% (C ® A)H(C © A)efzéjh]é

0%, 12 iz g2

(o2 H Ho -1
P3 P2 —P4P3 Pl P4

} trix:
af@) ofe 1
E{ac{( ) f‘ ) } =—e} (A B)Y(AOB)es,bi, i, [Pl Pgr‘ [(P1 ~PsP;'PY)T" —P['PsP,

af(@)of(e 1 . .
E aff ) 8£( ) =—ef (BOCOIE{NI(ONY(j)}  whereP, = (P, — PEPT'P;)~1. It easily follows that
;5 9Y5.1 o .
(Ce®Aey, CRB,, = (¥4, — T ¥ 1Y) .
ro 0 0 0 07
o --- 1 -~ 0 --- 0 --- 0
0O -+ 0 -+ 1 v 0 -« 0| —(U-1DK+1
B{M0)NG)} =0 ) Ty (25)
? 1)y =0 ' .
! 2\ o --- 0 -0 -~ 1 -0 :
— (-1)K+K
LO 0o - 0 0 04
T T 7
i I+i (K—-DI4+i
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APPENDIX B
CRB FOR LOW-RANK DECOMPOSITI

Consider arf x J x K x L arrayX

Ti,g,k,l

F
=" ai b ron. s,
=1

fore =1,...,1,5=1,...,
With a;, 7, b5, 9k, P, € C. 0kt 1S

Jok=1,...,

2083

and the log-likelihood functiorf(8) = InL(X) is given by

ON OF4—D ARRAYS
fw)z—JJKLm(mﬁ)

lexl

= —I]KLln (7rrf )

——Z||X2

= —I]KLln (7rrf )

with typical element
(GOBeH)a|?

F gk (28)
(Ho G o A)b;|?
K, l=1,...,L,
i.id. (int, 7, k, andi)

zero mean, complex Gaussian noise of variamteDefine A,

B, G, andH as in Section I, and unfol&X in four equivalent

matrix representations:

GoBOH
HoGoOA
A©HOB)
BOA®GG)

AT Ny,
B' + Ny,
GT + N3,
H' + N,

)
)

(
(
(
(

Correspondingly, we can write the |
equivalent ways as

L(X)

- 7TO'2)TJKL

(
X exp{ ZHXl

1
" (no?)IJEL

(
17
——E X
X exp J:||2

1
" (ro?)IKL

(
X eXP{ ZHX?,

1
" (ro?)IJEL

L
X exp{ Z |X4(1)

wherea; denotes théth column ofA™ and similarly forb;, g
andh;. As mentioned in Section Ill, for the purpose of removing
sale and permutation ambiguity to obtain a meaningful bound,

we assume that the first row &, B,

Therefore, the unknowh x 2(7 + J + K + L — 4)F complex

parameter vector is

(A®HOB)g:i|?

Z X (k

=— IJKLln (mo?)

cLIK <1 (29) 2
IKLxJ  (30) ZNX4 ~(BOAGG~
:JLI x K (31) _

The complex FIM is
:KIJ x L. (32)

af()
6

af(9)
96

(33)

wo-{(2)" (4}

The partial derivatives of (#) with respect to the unknown pa-
rameters are given by

af(0) _

ikelihood function in four

1

q — . H
dai; o (X1(5) = (GOBoH)a,)" (GOBOH)ey
(GoBoH)a|? ofe 1 ,
© Q)a”} U0) _ 1 (Xeli) - (MO GO A" (HO GO Ales
bj7f g
afe) 1
010 _ L (Xu(k) ~ (A©H O B)g,)" (A @ HO Ble
9k, f O
afe) 1
_(HoGo A, ||2} S - (X0~ (BOA© G (BoA® Gle
of(6) _ (9f6)\" 9f(8) _ (o)
8a;f7f o 8ai7f ’ ab;f o abLf
9f(6) _ <8f(0)>* 9f(6) _ <8f(0)>* (34)
~(A0HOB)g | agt;  \ gy on;, — \ Ohi,
wheree; is the fth unit coordinate vector.
Similar to (24), the FIM2 in (33) can be written as
¥ 0

whose size i@(I+J+K+L—-4)Fx2(I+J+K+L—4)F.
The elements o can be computed as in

. { 0(8) 0/(6)

1 H H
=—e"(GoBOH
9aj, 5, Oy, 1, } 21 (GOBOH)

G, andH are known.
X (G ®oB® H)ef2 62‘171‘2

(36a)

05(0) 91®) | _ 1 )

E ——elHoGoA

0= 327-.-73?7b2Ta-. bJ7gQ7 {ab;«hh abjz,fz OQefl( © O] )
X (HO G ® Aey,d), ;
g[T(7h2T7-- hL,HQ,...,hE 2Uj1,72

(36h)
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E af(e) of(e) _ie (Ao HoB)! The CRB on the variance of any unbiased estimator of the
agkhfl Ak, 1, S guadrilinear model (28) is then given by the invers€of35):
X (AQH@B)efzékl,kz _1 g1 0
(360) cra0 =0 =% ()]
E { 8{(0) 05(6) } :%ei}l BoAeGH Further simplification can be achieved as in Appendix A but is
Ohi, 1 Ohia gz a omitted here for brevity.
X (B OAG G)efz 611712
(36d) APPENDIX C
2f(8) 05(8) 1 CRB FOR Low-RANK DECOMPOSITION OF3-D ARRAYS WITH
E { da? , 0y } ?1 (GeBoH)! V ANDERMONDE STRUCTURE IN ONE DIMENSION
CL< 5 O . .
By T N Consider thd x J x K three-way arraX in (15), and assume
x E{NL ()N, (j)} without loss of generality thaA is Vandermonde:
x(HOGOA)ey, (36e) ) ) )
af( )af() :%e%(GQBQH)H al a2 ... O/F
da; T gk 1, o A — a? a - a% ) (37)
x E{Ny(i)N3(k)} :
X (A@H@B)efz (36f) a{_l aé_l a;‘_l
9f(6) 91(0) 1 ell 1GoBo H)! The log-likelihood function is the same as (19), whereas the
dag 5 Ohu, 1 x 2(J 4+ K — 1)F complex parameter vector is given by

x B {N()N(D)}

x(BOA®Ge,  (360)
f(8) af(9) 1 o HoGo A)H The partial derivatives of (8) with respect taz s anda} are
8b;“:7f1 8gk7f2 O’4 fl

_ [T 1T T T T _H H
0—[aQ,bQ,...,bJ,c2,...,c,(,aQ,...,c,(].

[

x E {N2(j)N3 ()} o) X,(i) - (Bo Clal" (B Cley
x (A@H®B)e,  (36h) =
1@ 0r6)| _ 1 af“—(af(”))
E el HoGo A dat ~ \ O '
{8bjf18hzf2} —en(HOGOA) a ay
X E{Ns(j )N 0} The derivatives with respect g ¢, cx ¢, b} , andcj, , are the
« (BOA®Ge (36i) same as in (21b), (21c), (21e), and (21f) The remaining proce-
f2 dures to obtain the CRB are similar to those in Appendix A and,
1 . .
P m af(0) LeiacHOB)! hence, are omitted for brevity.
angl 8h17f2 O’
% E{Ng N4 (l)} APPENDIX D
) CRB FOR REAL-PARAMETER LOW-RANK DECOMPOSITION OF
X (BOAOGey,. (36)) 3-D ARRAYS

The real case yields simpler CRB expressions, due to the fact
that the noise covariance matrix can be written in convenient
Llosed form, and an alternative scalar computation approach can
be adopted. Consider thlex J x K three-way arrayX with
typical element

It is cumbersome to write out the covariance matrixNof(¢)
andN-(j), but its computation can be done in the followin
simple way. First, construct an auxiliary four-way artayand
fill it with integers from 1 to/JK L as

Ui 5.k, = (i— 1)]KL+(}—1)KL+(/€—1)L+Z F
Tijk = Z a;i fbj pCr,j + M4k

By data rearrangement, we can express this four-way array f=t

in four different matrix forms, saypy ("D g, wheren; ; ;. is zero mean real-valued Gaussian i.i.di, i, & of
UL L) and U< corresponding to (29)—(32), re-variances?.

spectively. Now, to obtairE{N;({)NY(j)}, we can simply  The likelihood function ofX is given by

compareU, (¢) andUsz(j). If Uy(m, ) andUsz(n, j) contains

the same integer, thd&{N; ()N (j)}],m.» = o?; otherwise, 1 1 F 2
[E{N1({)NY¥(5)}]m.» = 0. In this way, we can easily obtain L(X) = H[ e e Tijk— Y i fbj for. g ] .
all necessary covariance matrices. kL V2o ¢ =1
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Thus, the log-likelihood function is

_1JK

HUE In (270?)
1 F
5,2 Yo | win =D aisbigeny
4,k f=1
where
0= [ag,...,ay,bg,...,b;,c;r,...,c

The FIM associated with the estimation of these parameters is

) :E{<ag(oo)>T <a;;;(00)>}'

given by

(38)

First, we calculate the derivatives @) with respect tas, [,

2085

Then, it can be shown that the FIM in (38) is given by

‘I’aa ‘I’ab ‘I’ac
vlow, ¥, (42)
ol e @,

Q) =

o2

where¥,, is an(I — 1)F x (I — 1)F block diagonal matrix
containing(/ — 1) replicas ofH, ¢ H., and¥,,, ¥.. are con-
structed similarly, i.e.,

‘I’aa II[,1 ® (Hb <o Hc)
Wy, =171 @ (H:oH,)
‘Ilcc :II(—I ® (Ha < Hb)

wherel;_; denotes af/ — 1) x (I — 1) identity matrix. ¥ .,
W,., andW¥,,. in (42) are given by (43)—(45), as follows:

[ (anQT) < Hc

U, =

L (bga?) & Hc
i (CQa;r) o H,

(bJa;r) < Hc 1

(byal) o H, |
(c;(a;r) oH, ]

(43)

bj7f, andckyf

af(o 1

a{f ) szﬂvﬁ,j,kbj,ka,f (39)
i, f ok

af(o 1

8{;( ) :;Zni,j,kai,fck,f (40)
2 ik

9f(0) _1

aCk ; I; Z 7‘Li7j7kai7fbj7f. (41)
7 Z,]

From (39)—(41), we can obtain

1
=5 D Uiy sy o, )00,
i

afe) of@) ] _ 1
E |: = (ai7 104, f5Ck, f1 Ck, 2)6"17"2
abjl:fl abjz:fz- o? Z ! ! ! S

o) of6)] _1
E [—— =5 D (ai7,0i, 1,55, 07,7)ks i
2 01 20,1702 1,2
Ierypy Ocharpp | 0% 4=
a0) 9f(0)] 1
B o | =02 > (e picrp)ai, b
LOGi, 1 OV5. /21 07
[0f(6) 0f(6)] _ 1
E\oa, ey, | =02 Y i z)ai pacrp
L sJ1 ¢ J2 j
[0f(0) 9£(6)] _ 1
B b, 7, dcn g, | o° > (@i, ai5)bj, g cn g
L J.J1 v, 02 i

Define the matrices
I
H, = Zaia? =ATA
=1

J
H,=> b;b] =B"B
j=1

K
H,. = chc;f =CTcC.
k=1

‘I’ac = . i (44)
L (Cga?) oH, (C[(a?) <>Hb_
[ (CQbQT) <& Ha (C[(bg) <& Ha
U, = : : . (45)

CQbT. <& Ha CKbT. <>Ha
_( J J

The CRB on the variance of any unbiased estimator is then

given by the inverse df? (42), provided it exists.
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