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Abstract—Multicast beamforming exploits subscriber channel
state information at the base station to steer the transmission
power towards the subscribers, while minimizing interference to
other users and systems. Such functionality has been provisioned
in the long-term evolution (LTE) enhanced multimedia broad-
cast multicast service (EMBMS). As antennas become smaller
and cheaper relative to up-conversion chains, transmit antenna
selection at the base station becomes increasingly appealing in
this context. This paper addresses the problem of joint multicast
beamforming and antenna selection for multiple co-channel
multicast groups. Whereas this problem (and even plain multicast
beamforming) is NP-hard, it is shown that the mixed -norm
squared is a prudent group-sparsity inducing convex regulariza-
tion, in that it naturally yields a suitable semidefinite relaxation,
which is further shown to be the Lagrange bi-dual of the original
NP-hard problem. Careful simulations indicate that the proposed
algorithm significantly reduces the number of antennas required
to meet prescribed service levels, at relatively small excess trans-
mission power. Furthermore, its performance is close to that
attained by exhaustive search, at far lower complexity. Extensions
to max-min-fair, robust, and capacity-achieving designs are also
considered.

Index Terms—Antenna selection, capacity, complexity, multi-
casting, NP-hard, relaxation, semidefinite programming, sparsity,
transmit beamforming.

I. INTRODUCTION

C ONSIDER a base station (BS) transmitter using an an-
tenna array to broadcast common information to multiple

radio subscribers. Instead of broadcasting isotropically, the BS
can exploit subscriber channel state information (CSI) to select
different weights for each antenna in order to steer power in the
directions of the subscribers while limiting interference to other
users. This type of multicast beamforming is provisioned under
the enhancedmultimedia broadcast multicast service (EMBMS)
of the long term evolution (LTE) standard. After considerable
market-related delays, EMBMS is scheduled for initial roll-out
in 2012. EMBMS can markedly boost spectral efficiency and
reduce energy and infrastructure costs per bit when the same
content must be delivered wirelessly to multiple subscribers.
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In practice, a BS may have more antennas than expensive
radio transmission chains, and it is desired to automatically
switch the available chains to the most appropriate subset of
antennas in an adaptive fashion. Each radio transmission chain
includes a digital-to-analog (D/A) converter, a mixer, and a
power amplifier. Antenna elements, on the other hand, are be-
coming smaller and cheaper; thus, antenna selection strategies
are becoming increasingly desirable.
The multicast beamforming problem under minimum re-

ceived signal-to-noise ratio (SNR) constraints was initially
studied in [18]. The problem was shown to be NP-hard, how-
ever a computationally efficient approximate solution was
developed based on semidefinite relaxation. This formulation
was later extended to multiple co-channel multicast groups
in [8], cognitive underlay scenarios [16], and joint multicast
beamforming and admission control [12]. However, antenna
selection has not been considered in any of these papers. On
the other hand, antenna subset selection has been initially
considered for point-to-point multiple-input multiple-output
(MIMO) links using various techniques [6], [17], [25]. For
the multicast scenario, an antenna selection scheme has been
proposed in [15], where the antenna subset is chosen to max-
imize the minimum SNR across all users, assuming that the
BS transmits mutually uncorrelated signals of equal power
from the different antennas (across the transmission chains). In
this case, maximizing the minimum SNR also maximizes the
multicast rate under the constraint of spatially white transmis-
sion. A limitation is that attaining this rate requires complex
multi-stream Shannon encoding and decoding at long block
lengths, also implying long decoding delay that is not suitable
for streaming media multicast. While using a spatially white
transmit covariance does not require CSI at the transmitter,
the antenna selection strategy in [15] requires knowledge of
all channel gains at the transmitter. But if CSI is known at the
transmitter, then it is possible to choose the transmit covariance
accordingly, thus attaining higher rate. Beamforming, on the
other hand, requires far simpler encoding and decoding with
CSI at the transmitter, and is often close to attaining multicast
capacity [7], [18]. It is also worth noting that the optimal
higher-rank transmit covariance is obtained as a by-product of
[18]. Another significant difference between the work reported
here and [15] is that the latter requires exhaustively searching
through all antenna subset possibilities, whereas the present
paper’s computationally efficient algorithm performs the an-
tenna selection and beamforming design tasks jointly.
Convex sparsity-inducing regularizers have been widely used

in various applications (cf. [1] and references therein). The most
commonly used regularizer is the -norm, which has been used
in recent works for receive beamforming antenna selection [5],
[14]. Beampattern synthesis with antenna selection was pursued
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in [14], using a convex optimization formulation that controls
the mainlobe and sidelobes while minimizing the sparsity-in-
ducing -norm to produce a sparse beamforming weight vector
involving fewer antennas. The setup in [14] only applies to uni-
form linear antenna-array (ULA) far-field scenarios, whereas
the present paper’s approach works for arbitrary channel (or
steering) vectors. Another important difference is that [14] re-
stricts the beamforming weights to be conjugate symmetric in
order to turn the non-convex lower bound constraints on the
beampattern into affine ones. This gives up half of the problem’s
design variables (degrees of freedom), thereby yielding subop-
timal solutions when only the magnitude of the beampattern is
important, as in transmit beamforming. No such restriction is
placed on the beamforming weight vectors here. In a similar
vain, [5] considered using the -norm to obtain sparse solutions
to convex beampattern synthesis problems. Whereas [5] does
not restrict the weight vector to be conjugate symmetric, it does
unnecessarily constrain the phase of the beampattern; without
such a constraint on the phase, the problem is non-convex, and
thus more challenging.
In this paper, the joint problem of transmit beamforming

and antenna selection is considered for multiple co-channel
multicast groups. Whereas this problem (and even plain multi-
cast beamforming) is NP-hard, we show that using the mixed

-norm squared as a group-sparsity inducing convex reg-
ularization yields a natural semidefinite programming (SDP)
relaxation. Sparse beamforming vectors can be obtained from
the resulting sparse solution, implying antenna selection. In
order to further enhance sparsity, an iterative re-weighting
scheme similar to the one used in [4] is employed. Moreover,
we show that the same approach can be used to obtain a tight
lower bound on the multicast channel capacity with antenna
selection. More generally, the proposed novel algorithm can
easily be extended and applied to obtain sparse solutions for a
wide class of non-convex quadratically constrained quadratic
programming (QCQP) problems for which SDP relaxation is
relevant (cf. [11] and references therein). Simulations indicate
that the proposed algorithm considerably reduces the number
of antennas required to meet prescribed service levels, at a
small cost in excess transmission power. Furthermore, its
performance is close to that attained by exhaustively trying all
antenna subsets, at far lower complexity.
Relative to the conference submission [13], this journal ver-

sion i) treats the general case of multi-group multicasting with
group sparsity of the matrix of beamforming vectors, instead
of the single group case with plain sparsity of the beamforming
vector; ii) proves that the proposed relaxation admits a Lagrange
bi-dual interpretation, which is interesting because the native
(group) sparsity-inducing formulation is not a QCQP; iii) in-
cludes a discussion of relevant extensions, from max-min to ro-
bust and capacity-achieving designs; and iv) fleshed-out numer-
ical results and comparisons.
The algorithms presented here employ general-purpose SDP

solvers, which can effectively deal with up to a moderate
number of antennas and users (order of 100 when using a
typical personal computer as of this writing). They are not
customized to handle many hundreds or even thousands of
transmit antennas, as in some recent proposals for Massive

MIMO systems [26]. Developing custom algorithms for joint
multicast beamforming and antenna selection for Massive
MIMO is certainly of interest, but striking the right balance
between performance and complexity for such systems requires
a very different approach. We have preliminary results in this
direction, which will be reported in follow-up work. Here we
focus on up to moderate-size systems, which are the norm as
of this writing.
Notation: Boldface uppercase letters denote matrices,

whereas boldface lowercase letters denote column vectors. The
superscripts and denote transpose and Hermitian
(conjugate) transpose operators, respectively. , ,

, , and denote the trace, the rank, the
Euclidean norm, the absolute value (element-wise absolute
if used with a matrix), the real, and the imaginary operators,
respectively; denotes the -th entry of and the

-th entry of . MATLAB notation
stands for the submatrix of obtained by deleting all rows
and columns whose indices do not fall in the range
and , respectively; denotes an element-wise
inequality, whereas denotes that is a Hermitian posi-
tive-semidefinite matrix. Finally, , , , and
denote the identity matrix, the matrix with all
one entries, the all ones matrix, and the all
zeros matrix, respectively.

II. PROBLEM FORMULATION

A. Basic Model

The system model is similar to [8], comprising a single BS
transmitter with antennas and single-antenna receivers.
We assume there are multicast groups ( ),
and each receiver listens to a single multicast. The set of
receivers participating in multicast group is
denoted by , and . The BS broadcasts a
common message to the receivers of each multicast group.
Vector is formed by the beamforming weights
applied to the transmit-antenna elements for transmission
to multicast group . The temporal information-bearing wave-
form intended for multicast group is denoted by . The
transmitted signal vector is . Assuming that

are temporally white, zero-mean, unit variance,
and mutually uncorrelated, the total transmission power is

. The complex vector that models the propagation
loss and the frequency-flat quasi-static channel from each
transmit antenna to the receive antenna of user is denoted
by , . The noise at receiver is assumed
zero-mean white, with variance . The signal-to-interfer-
ence-plus-noise ratio (SINR) at receiver is then given
by

It is assumed that the BS has acquired and .
The design problem is to minimize the total transmit-power,
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subject to prescribed receive-SINR thresholds at each user;
that is

(1)

The quadratic constraints in (1) are non-convex; therefore, (1)
is a non-convex optimization problem. In fact, (1) is NP-hard
for general channel vectors, even for a single multicast group

[18]. Problem (1) has been studied in [8], where a
convex approximate SDP reformulation was developed yielding
an efficient near-optimal solution. For the special case ,
that is, when each user receives an independent message with no
multicasting, (1) can be reformulated as a convex, second-order
cone programming problem [2]. It is also worth noting that if the
channel vectors are confined to those resulting from a transmit
ULA in the far-field, line-of-sight scenario (Vandermonde chan-
nels ), problem (1) can be recast as a convex problem,
and thus it can be solved efficiently [9].

B. Antenna Selection

Suppose now that only RF transmission chains
are available, and thus only antennas can be transmitting
simultaneously. The goal is to jointly select thebest out of
antennas, and find the corresponding beamforming vectors

so that the transmission power is minimized, subject
to receive-SINR constraints per subscriber. Both objectives
must be jointly considered, because the constituent selection
and beamforming problems are tightly coupled.
Define the vector ,

where is the -th component of . Vector
collects all multicast group weights applied to the -th
antenna. Define also the concatenated beam-
forming vector , and the vector

. For an antenna to be excluded
from transmission, vector must be set to zero. This means
that the -th entry of each , for all multicast groups, must
be set to zero simultaneously. Hence, the joint antenna selection
and transmit-power minimization problem can be expressed as

(2)

where the -(quasi)norm is the number of nonzero entries of ;
i.e., . Instead of the hard sparsity

constraint, an penalty can be employed to promote sparsity,
leading to

(3)

where is a positive real tuning parameter that controls the spar-
sity of the solution, and thus the number of selected antennas.
Problem (3) strikes a balance between minimizing the transmis-
sion power and minimizing the number of selected antennas,
where a larger implies a sparser solution. Note that for any ,
there is a corresponding for which problems (3) and (2) yield
the same sparse solution, and thus focus is placed on (3) only.
Whereas the SINR constraints can be satisfied in the single

multicast group case with only one antenna ( ) transmit-
ting at sufficiently high power (assuming no channel coefficient
is identically zero), the situation is not the same for multiple
multicast groups. Problems (2) and (3) can be infeasible due
to strong interference, stringent SINR constraints, high correla-
tion between channels of users belonging to different multicast
groups, and/or insufficient number of transmit-antennas used.
Unfortunately, due to the -(quasi)norm, solving (3) requires

an exhaustive combinatorial search over all possible spar-
sity patterns of , where the NP-hard problem (1) must be
solved (or closely approximated using the algorithm in [18])
for each of these patterns. This motivates the pursuit of com-
putationally efficient, near-optimal solutions. The ensuing sec-
tion introduces a convex sparsity-inducing approximation to the
-norm, which is then used in obtaining a convex relaxation to

(3).

III. RELAXATION

A. Group-sparsity Inducing Norms

For the special case of a single multicast group ,
the -norm (defined as ) is known
to offer the closest convex approximation to the -norm,
albeit a weaker and indirect measure of sparsity [4]. However,
for general , directly applying the -norm
per does not imply antenna selection. Indeed, replacing
the non convex -norm in the objective function of (3) with

would result in a sparse solution for each ,
but the zero entries of each will not necessarily align to
the same antenna(s) to be omitted. Therefore, it is crucial to
utilize a regularization norm that explicitly promotes sparsity
for all the entries of simultaneously.
The widely used group-sparsity promoting regularization,

which was first introduced in the context of the group least-ab-
solute selection and shrinkage operator (group Lasso) [24], is
the mixed -norm, defined as
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Note that . The -norm behaves as the
-norm on , which implies that each (or equiva-

lently ) is encouraged to be set to zero, therefore inducing
group-sparsity. More generally, it has been shown that mixed
-norms, defined as

induce group sparsity for [1]. Setting yields
, which does not induce group sparsity.

Next, we argue that it is possible to replace any sparsity-in-
ducing norm regularization with the squared norm without
changing the regularization properties of the problem. De-
fine the convex function , and define

for as any convex sparsity-inducing
norm that replaces the -(quasi)norm in (3). Problem (3) can
thus be generically written as

(4)

where

Problem (4) is equivalent to

(5)

since for any , one can find a such that the both problems
yield the same optimum sparse solution. By squaring both sides
of the constraint, problem (5) can be written as

(6)

where . If the Pareto boundary is convex, then there
exists a such that problem

(7)

is equivalent to (6) [3, Section 2.6.3], i.e., (7) is just a
re-parametrization of (4). This is always true for convex
problems, e.g., the Lasso1 [20], suggesting that can
be used as a sparsity-inducing regularization. In our case
is non-convex, hence convexity of the Pareto boundary is not
guaranteed. Still, the above discussion motivates using
as a sparsity-inducing penalty in place of the penalty in (3).
For our purposes, we will use the convex -norm squared

as a group-sparsity inducing regularization to replace the non-
convex -norm in (3). The -norm is defined as

1It is also easy to check that the soft thresholding (shrinkage) property of the
Lasso holds when the -norm squared is used instead of the -norm to induce
sparsity, albeit with a different scaling for the threshold.

The reason why the -norm squared is used in particular
will become clear in the next subsection. Note that if
where no group-sparsity is required, the -norm reduces to
the -norm. The group-sparsity promoting properties of the

-norm were studied in [21]. The joint antenna selection and
transmit-power minimization problem (3) can thus be relaxed to

(8)

Using the mixed -norm (or equivalently the -norm
squared) as a convex surrogate of the -norm in (3) results
in a solution that is no longer necessarily the minimum power
solution. This limitation is due to the properties of the - and
-norms. One shortcoming is that the -norm is size-sensi-

tive, whereas the -norm counts the number of nonzero entries
without regard to their size. Another issue is that -norms may
have the undesired effect to favor solutions with many compo-
nents of equal magnitude. The solution of the relaxed problem
(8) compromises between minimizing the - and -norms.
This implies that after obtaining an approximate solution to (3),
one should solve a reduced-size -norm minimization problem
of type (1) as a last step, omitting the antennas corresponding
to the zero entries of the sparse approximate solution.

B. Semidefinite Program Formulation

After replacing the -norm in (3) by the -norm squared,
the resulting problem (8) is still NP-hard since it contains
(1). In this subsection we show that (8) can be relaxed to
a convex semidefinite program (SDP) [22]. SDP problems
can be efficiently solved (in polynomial time) using inte-
rior point methods. Define ,
(where ), and for

, such that

...
. . .

...

Then, the optimization variables can be changed from
to using the following transformations:

The -norm squared is also transformed as follows:
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Note that if and only if and .
By dropping the non-convex constraint, problem
(8) can be relaxed to the SDP:

(9)

Due to rank relaxation, the off-diagonal matrices ,
do not appear in the constraints of (9); thus, in light of the cost in
(9), they can be set to zero. Hence, using for brevity,
and defining as the element-wise absolute
maximum among all , a simplified expression for the

-norm squared is:

(10)

Therefore, the rank-relaxed SDP problem (9) can be re-written
as

(11)

where the element-wise inequality , , can be sus-
tained using positive semidefinite constraints as shown in the
Appendix. For the single multicast group case, problem (11)
simplifies to

(12)

On the other hand, the power minimization problem (1),
without antenna selection, can be relaxed to the SDP:

(13)

Insights From Duality. To gain some insight on the relation-
ship between (11) and the NP-hard problem (8), we shall invoke
duality. The Lagrangian dual problem of (8), which is by defi-
nition a convex problem, and the SDP relaxation (11), both pro-
vide lower bounds on the optimal value of the NP-hard problem
(8). The following result shows that these two lower bounds in
fact coincide.
Proposition 1: Problem (11) is the Lagrange bi-dual of

problem (8).
Proof: Refer to the Appendix for the complete proof.

Proposition 1 implies that the SDP relaxation (11) yields the
same lower bound on the optimal solution of (8) as that obtained
from the Lagrangian dual problem, which is the tightest lower
bound attainable via duality. The main element of the proof is
to reformulate (8) as a QCQP. The dual of a QCQP is an SDP
[23, pp. 403-404], which is relatively easy to find. It then fol-
lows readily that the dual of this SDP dual problem is the SDP
relaxation (11).
To extract the minimum power beamforming vectors corre-

sponding to the selected antennas after solving (11), we use the
following procedure. Let denote the sparse solution of
(11). Its zero diagonal entries correspond to the antennas that
should be left out, whereas the nonzero ones correspond to the
selected antennas. Note that if an entry of is zero, then
the corresponding entry in all must be zero. Suppose
that the number of nonzero diagonal entries of is ,
and let denote the corresponding subset of
antennas that should be utilized, where the cardinality of is
. Due to the influence of the mixed -norm squared min-

imization, the minimum power beamforming vector cannot be
directly extracted from . Thus, to find the minimum power
solution, (13) is solved for the reduced size problem, namely

, where in this case is an matrix
obtained after omitting the channel entries corresponding to
the left-out antennas. Due to the rank relaxation, the solution to
(13), denoted by , might not comprise only rank-one
matrices in general; hence, the optimum beamforming vectors
cannot be directly extracted from the obtained .
However, it is possible to adopt the approach of [8], where
an approximate solution to the original problem (1) can be
found using a Gaussian randomization technique to generate
candidate beamforming vectors from and choose
the ones yielding a feasible solution of minimum power. If

are all rank-one matrices, then their respective
principal components, suitably scaled, will be the optimal
beamforming vectors for problem (1). Scaling these principal
components is a multicast power control problem, which can
be optimally solved by linear programming [8].
The sparsest solution (meaning the one with the minimum

number of antennas) that can be obtained using this approach
corresponds to using in (11), or equivalently

(14)
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The use of the size-sensitive -norm (or -norm squared),
however, often precludes very sparse solutions, simply because
they cost too much in terms of cost. This motivates adapting
the sparsity-enhancing iteratively re-weighted -norm idea,
originally proposed in the context of (linear) compressive
sampling problems [4], to the present context.

C. Enhancing Sparsity: Iterative Algorithm

To further increase the group-sparsity of , the
iteratively re-weighted -norm penalty in [4] is adapted
to suit our problem. Consider the weight vector , where

are positive weights, and define the
weight matrix . Using and

as before, and invoking again the implica-
tion of rank-relaxation that was previously used to obtain the

-norm squared expression (10), the weighted -norm
squared can be written as

The iterative algorithm that enhances group-sparsity can then
be described as follows:
1) Initialize the iteration count to , and theweight matrix
to .

2) Solve the weighted -norm squared minimization SDP
problem

(15)

to obtain the optimum at the -th iteration.
3) Update the weight matrix entries to be used in the next
iteration as

4) Terminate on convergence, or, when a certain maximum
number of iterations for is reached. Otherwise, increment
, and go to step 2.

The weight matrix updates force small entries of (and thus
the corresponding entries of ) to zero, and avoid un-
duly restraining large entries. The small parameter provides
stability, and ensures that a zero-valued entry of does not
strictly prohibit a nonzero estimate at the next step. In the initial
step of the iterative algorithm, problem (14) is solved for ini-
tialization. Convergence of this algorithm is very fast (

iterations), as observed in the simulations. It is worth reminding
the reader that this iterative algorithm is not guaranteed to find
the minimum number of antennas that yield a feasible solution
of (1); finding such minimum-antenna solution is NP-hard.

IV. PROPOSED ALGORITHM

The proposed algorithm that jointly selects antennas
and finds the beamforming vector for each multicast group such
that the transmit-power is minimized, subject to receive-SINR
constraints for each user, can be summarized as follows:
• Step 1: Run the weighted -norm iterative algo-
rithm described in Section III-C. Terminate the weighted

-norm iterative algorithm ‘prematurely’ if a solution
comprising or fewer antennas is encountered during
outer iterations. Record the resulting sparse solution
and the corresponding weight matrix . Let denote
the number of nonzero diagonal entries in . If
after the iterative algorithm terminates, then the pro-
posed algorithm fails to provide a sparse-enough solution.
Brute-force enumeration can be used in this case to find a
solution, if the problem is feasible. If , then pick
to contain the antennas corresponding to the nonzero

diagonal entries of and skip to step 3. Otherwise,
continue.

• Step 2: Solve the SDP problem

(16)

using the obtained weights , which is problem (11) with
replaced by , and use binary search to find that

gives the required number of antennas . The binary search
procedure works as follows. For a given upper bound
and lower bound , set
and solve the SDP problem. Let denote the solution
of (16) having nonzero diagonal entries. If ,
then find the subset of selected antennas corresponding
to the nonzero diagonal entries of , and move to the
next step. Otherwise, if then set while
if then set , and repeat this step until

.
• Step 3: Now that antennas have been selected,
(13) is solved for the reduced-size problem, namely

, to find the minimum power beam-
forming vector. If the solution, denoted as ,
contains only rank-one matrices, then the (suitably scaled
[8]) principal component of each is the optimal
beamforming vector for group . Otherwise, use the ran-
domization technique of [8] to generate candidate sets of
beamforming vectors from , and choose the set
that yields a minimum power solution among all feasible
ones.

Note that early termination of the binary search when a solu-
tion with fewer than the desired antennas has been obtained
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will result in higher transmission power. Since is non-nega-
tive, can simply be set to zero. Suitable can be ob-
tained empirically, depending primarily on (since the value of
entries of that correspond to zero entries of is as a
result of the updating step of the iterative sparsity-enhancing al-
gorithm), in addition to the network parameters , , , and
the channel statistics.
Although the binary search over may require solving (16)

more than once for different values of until the appropriate
one is found, an important advantage over the exhaustive search
method is that the number of iterations is independent of
and , unlike exhaustive search, which requires solving
problems of type (13). The solution obtained using the novel
algorithm occasionally coincides with that obtained using ex-
haustive search, while the transmission power increase for the
other cases is insignificant, as demonstrated in the simulations
of Section VI.
Complexity analysis. Following [8], the worst-case com-

plexity of solving the SDP problem (13) using interior point
methods is iterations, where represents
the accuracy of the solution at the algorithm’s termination, and
each iteration requires at most arithmetic
operations. The actual runtime complexity scales much slower
with , , than this worst-case bound predicts. The SDP
problem (16) includes an additional auxiliary matrix
and positive semidefinite constraints (as shown in the ap-
pendix), that increase the actual runtime of (16) as compared to
that of (13). However, the worst-case complexity order remains
the same.
Let denote the runtime complexity of problem (16)

(same as (11) and (15)), where is a function of , , ,
and consider the complexity analysis of each of the three steps
of the proposed algorithm. In step 1, the weighted -norm
iterative algorithm typically terminates within less than 15 iter-
ations, irrespective of the problem size. An SDP of type (15) is
solved in each iteration. Thus the total complexity of this step
is . In step 2, the binary search can be considered of con-
stant complexity order. The number of binary searches is typi-
cally very small with the proper choice of , as shown in the
simulations of Section VI. In each iteration, an SDP of type (16)
is solved. Hence the total complexity of this step is also .
In step 3, one SDP of type (13) is solved (replacing with ),
with a runtime complexity that is less than . Finally, the
randomization technique that may be used to obtain the beam-
forming vectors has been analyzed in [8], where it is shown that
an -optimal solution can be obtained in iter-
ations, each requiring at most arithmetic opera-
tions. Thus, the overall worst-case complexity of the proposed
3-step algorithm is .

V. RELEVANT EXTENSIONS

The proposed novel algorithm can easily be extended and ap-
plied to obtain sparse solutions for a wide class of non-convex
QCQP problems, where SDP relaxation is relevant. MIMO de-
tection and sensor network localization are two such applica-
tions. For further details on applications where the SDP relax-
ation is used, the reader is referred to [11] and references therein.

In this section we discuss two important variations to the mul-
ticast beamforming problem, where our proposed approach can
also be applied.

A. Limiting Inter-Cell or Primary User Interference

Suppose there is only one multicast group , and con-
sider joint antenna selection and beamformer design to min-
imize the transmit-power, subject to prescribed receive-SNR
constraints for each user. In addition, consider that the in-
terference induced to other users must not exceed a given
threshold . The channel vector from the transmit antennas to
the receive antenna of user is denoted by , ,
and is assumed known at the transmitter BS. The joint problem
is expressed as

(17)

which is the same as (3) with the additional interference con-
straints for users. Problem (17) appears in two main sce-
narios: inter-cell interference mitigation in a co-channel cellular
multicast setting, and secondary multicasting in a cognitive un-
derlay setting, where there is a need to limit interference in-
flicted to primary users. These scenarios have been considered
in [16], without antenna selection. Similar to [16], our formula-
tion can be suitably modified to handle cases where only imper-
fect channel state information is available at the BS, in the form
of channel estimates with norm-bounded errors.
Returning to (17), upon replacing by and using

the same semidefinite relaxations discussed in Section III,
problem (17) can be relaxed to the SDP:

(18)

where . To select antennas, the proposed
algorithm in Section IV can be directly applied after adding the
constraints for to all the SDP prob-
lems solved. For the final step, the randomization algorithm pro-
posed in [16] can be used to find the minimum power beam-
forming vector corresponding to the selected antennas.

B. Max-Min Fair Beamforming

We now consider the related joint problem of maximizing the
minimum received SNR over all users together with antenna
selection, subject to a bound on the transmission power (as-
suming one multicast group for simplicity):

(19)
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Problem (19) is equivalent to maximizing the beamforming
downlink achievable rate using out of antennas, since
in the multicast scenario, the worst-user SNR determines the
common (multicast) rate [18]. Problem (19) was studied in
[18] without the constraint, and was shown to be
NP-hard. Problem (19) can be equivalently re-written as

(20)

Following the same approximation steps as in Section III,
problem (20) can be relaxed to the SDP:

(21)

To select antennas, the proposed algorithm in Section IV
can be applied by solving the appropriate SDPs of type (21), and
using the randomization algorithm proposed in [18] in the final
step to extract the beamforming vector.
In closing this section, two remarks are in order on the rela-

tions between maximizing the minimum received SNR (19), the
capacity of the multicast channel [7], and the antenna selection
with spatial multiplexing scheme in [15]:
Remark 1: Defining as the covariance of the transmitted

signal, the optimal solution to the rank-relaxed SDP problem
(21), without the sparsity inducing term ( ), is the
optimal covariance that achieves the capacity of the multicast
channel (maximum achievable common rate) for an -antenna
BS with full CSI at the transmitter [7]. Whereas exhaustive
search is required to achieve capacity when only an-
tennas are utilized, the proposed algorithm in Section IV can
be used to obtain an approximate, less complex, solution (by
solving the appropriate SDPs of type (21)). The only difference
between the multicast beamforming rate maximization and the
multicast channel capacity is that is restricted to be rank one
with beamforming (and the randomization algorithm proposed
in [18] is needed to extract the beamforming vector from the op-
timal ), whereas there is no such restriction (and no approx-
imation) for the capacity-achieving transmit covariance. The
role of the rank restriction and the use of the sparsity inducing
-norm squared approximation are illustrated in Section VI-C.
Remark 2: In the absence of CSI at the transmitter, the al-

ternative is to transmit using a spatially white covariance, i.e.,
, where is the total transmission power and de-

notes the covariance of the transmitted signal [7]. An antenna
selection scheme has been proposed in [15] for maximizing the
minimum received SNR based on this setup. When utilizing a
subset of antennas of size , the transmission power is equally
divided among all antennas yielding an SNR for the -th user

. From all possible antenna subsets

of size , the selected subset is the one maximizing the
minimum SNR across all users, namely

where is the set of all possible antenna subsets of size
. This antenna selection scheme requires knowledge of the
channel gain corresponding to each transmit antenna at the
transmitter ( ) for each user, in addition to exhaustively
searching through all different antenna subset selec-
tions. The results of [7] imply that transmitting with spatially
white covariance will outperform beamforming (in terms of
spectral efficiency) when , because every beamforming
direction will likely be nearly orthogonal to at least one user’s
channel, whereas beamforming performs significantly better
(very close to the multicast capacity) for relatively large .
Attaining this rate with spatially white covariance is a challenge
since it requires complex multi-stream Shannon encoding and
decoding at long block lengths, also implying long decoding
delay that is not suitable for streaming media multicast. Beam-
forming, on the other hand, requires far simpler encoding and
decoding. The performance of our proposed beamforming
based algorithm is compared with that of [15] in Section VI-C.

VI. SIMULATED TESTS

To test the proposed SDP-based algorithms, YALMIP was
used. YALMIP is a modeling language for optimization prob-
lems that is implemented as a free toolbox for MATLAB [10],
and uses SeDuMi, a MATLAB implementation of second-order
interior-point methods, for the actual computations [19]. The
novel algorithm was tested with two channel types; Rayleigh
fading channels and Vandermonde channels corresponding to a
far-field ULA setup. Throughout this section, the noise variance
for all users was set to .

A. Single Multicast Group

We first consider a single multicast group, and set the min-
imum required SNR to at all users.
Rayleigh fading with antennas. The first simula-

tion setup included a BS with transmit-antennas broad-
casting a common message to receivers. Indepen-
dent identically distributed (i.i.d.) Rayleigh fading channel vec-
tors were generated, each with i.i.d. entries circularly
symmetric zero-mean complex Gaussian random variables of
variance 1. To gain insight, detailed results are provided first
for a single “typical” channel realization, which allows com-
paring the selected antenna subsets with the baseline exhaustive
search solution. Running the weighted -norm iterative algo-
rithm described in Section III-C results in the sparsest solution
of antenna, which corresponds to selecting antenna
number 5. This result is obtained when the iterative algorithm
converges after 8 iterations. It is worth noting that after the ini-
tial step of the iterative weighted -norm algorithm (which is
equivalent to solving problem (14)), the resulting sparse solu-
tion has antennas, many more than the single antenna
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TABLE I
PERFORMANCE OF THE PROPOSED ALGORITHM AND THE EXHAUSTIVE SEARCH ALGORITHM FOR A PARTICULAR CHANNEL REALIZATION FOR DIFFERENT

ANTENNA SELECTIONS , FOR ANTENNA BS AND A SINGLE MULTICAST GROUP WITH USERS

solution obtained after the iterative weighted -norm algorithm
terminates.
Table I summarizes the results obtained using the novel al-

gorithm and by exhaustively searching over possible antenna
subset selections for this representative channel realization. The
required number of antennas to be selected (or, the available
number of RF chains) is listed in column 1. The subset of se-
lected antennas is given in columns 2 and 6 for the proposed
algorithm and exhaustive search, respectively. The minimum
transmit-power corresponding to each is listed in columns 3
and 7 (in dBm units). The increase of transmission power (com-
pared to the case of using all antennas) due to antenna
selection is given in columns 4 and 8 (in dB units). Finally, the
total number of SDP problems solved in order to obtain the re-
quired solution is shown in columns 5 and 9.
The results in Table I demonstrate that as the number of

antennas selected for transmission decreases (as the solution be-
comes more sparse) the corresponding minimum transmission
power increases, due to the decrease in degrees of freedom, as
expected. Interestingly, the simulations suggest that the number
of transmit antennas can be significantly reduced at only a
small price in terms of excess transmission power. Halving the
number of antennas from 8 to 4, for example, entails only 1.11
dB extra power. Comparing with the exhaustive search results,
one can verify that exhaustive search slightly outperforms the
proposed algorithm only for the cases of and
antennas (by less than 0.1 dB), by selecting different antenna
subsets. However, the number of SDP problems that must be
solved for the exhaustive search is significantly larger. The
maximum number of iterations required for the binary search
process, namely step 2 in the proposed algorithm, is 7—these
are needed to select antennas, where 1 SDP problem is
solved for step 1, 7 for step 2, and 1 for the final step, yielding
a worst-case total of 9 SDP problems. On the other hand, the
exhaustive search algorithm requires solving SDP
problems to select antennas.
Table II reports the average and maximum increase in trans-

mission power (compared to the case of using all an-
tennas) that correspond to selecting antennas for the proposed
algorithm, the exhaustive search, and the case where the number
of available antennas is only (not ) such that no antenna se-
lection is performed (this is equivalent to randomly selecting the
antennas). In addition, the average and maximum number of

Fig. 1. The necessary extra power versus for antennas and a single
multicast group with users in a Rayleigh fading environment.

SDP problems solved for the proposed algorithm and exhaus-
tive search are reported. For a better visual comparison, Fig. 1
plots the average increase in transmission power versus for
the compared schemes (corresponding to columns 2, 6 and 9 of
Table II). The results are obtained for 100 different Rayleigh
channel realizations. The main conclusions from Table II and
Fig. 1 are summarized as follows:
1) The number of transmit antennas can be considerably re-
duced at a relatively small cost in terms of excess trans-
mission power. If we halve the number of antennas, the
transmission power increases by only 1 dB, on average, to
satisfy the SNR constraints using the proposed algorithm.

2) Compared to the exhaustive search, the proposed algorithm
incurs much lower complexity (measured in terms of the
number of SDP problems solved) at a very small additional
power cost. The difference in power is less than 1 dB, on
average.

3) If only RF transmission chains are available at the BS,
increasing the number of transmit antennas (from which
only are activated) results in a reduction in transmission
power due to the additional diversity. For example, if only
4 RF chains and 4 antennas are available ,
1.2 dB more transmission power is required compared to
having the option of selecting 4 out of 8 antennas using the
proposed algorithm, on average.

Rayleigh fading with antennas. In Fig. 2, we con-
sider antennas and users, again assuming
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM,
EXHAUSTIVE SEARCH AND NO ANTENNA SELECTION, FOR
ANTENNA BS AND A SINGLE MULTICAST GROUP WITH

USERS IN A RAYLEIGH FADING ENVIRONMENT

Fig. 2. The necessary extra power versus for antennas and a single
multicast group with users in a Rayleigh fading environment.

i.i.d. Rayleigh fading across antennas and users. The figure de-
picts the average increase in transmission power (compared to
the case of using all antennas) versus . If we halve the
number of selected antennas ( ), the transmission power
increases by only 1.5 dB to satisfy the SNR constraints using
the proposed algorithm, whereas if only 8 antennas were in-
stalled instead of 16 (i.e., no antenna selection), an additional
0.7 dB transmission power would be necessary (compared to
the proposed algorithm), on average. The results for the exhaus-
tive search algorithm are not included because of its prohibitive
complexity. If, for example, it is required to select an-
tennas, exhaustive search requires solving SDP
problems per channel realization, which is clearly prohibitive.
On the other hand, the proposed algorithm required solving less
than 7 SDP problems for , on average.
Rayleigh fading with antennas. In Fig. 3, we

consider a scenario with a large number of antennas and users
( , ), again assuming i.i.d. Rayleigh fading.
The figure shows the average additional transmit-power needed
using the proposed algorithm, which is 1–2 dB less than the
transmit-power needed when the first antennas are blindly
selected, for all values of considered. Read in a different
way, the proposed algorithm uses far fewer transmit antennas
for the same transmit-power. Of course, it is computationally
prohibitive to apply exhaustive search in this scenario. Note
that the gains offered by the proposed algorithm are relatively
small when the number of users is relatively large and the
channel is i.i.d. across antennas and users—because the law of
large numbers kicks in. The situation is different when is
small. For example, with antennas to choose from,

users, and antennas to be selected, the max-
imum transmit-power using our proposed algorithm, over 1000

Fig. 3. The necessary extra power versus with and in
a Rayleigh fading environment.

Rayleigh channel realizations, was 34.7 dBm (23.9 dBm on
average), whereas the maximum transmit-power when blindly
selecting the first 2 antennas was 58.9 dBm (30.3 dBm on
average). This means that the proposed algorithm can save up
to approximately 24 dB in transmit-power compared to fixed
antenna selection in this setting.
Far-field beamforming with ULA. Fig. 4 illus-

trates the beampatterns for a particular far-field multicasting
scenario with ULA antennas and users. The

complex channel vector for each user is Vander-
monde: , where the
angles are given by , with denoting
inter-element spacing between successive antennas, the car-
rier wavelength, and the angles define the directions of the
receivers. We set and the users were al-
located such that the direction angles of the first 11 users ,

, were from to with spacing be-
tween each user, the direction angles to second 11 users ,

, were from to with spacing be-
tween each user, and the direction angles to last 11 users ,

, were from to with spacing be-
tween each user. Fig. 4 compares the beampatterns resulting
from: (a) using all antennas, (b) using the proposed
algorithm to select antennas, and (c) using exhaustive
search to select the best antennas. The proposed algo-
rithm selects the antennas after solving
3 SDP problems and incurs additional transmit-power of 1.38
dB (compared to using all 8 antennas), whereas the exhaustive
search selects the antennas after solving 70
SDP problems and incurs 0.8 dB extra power.
Robust beamforming. In case of imperfect CSI, it is possible

to adopt robust beamforming designs such as those considered
in [16], which rely on the notion of worst-case design. It is as-
sumed in [16] that all channel vectors are known with certain
errors , and that these errors are all norm-bounded ,
where is known. The worst-case SINR constraint for user
in multicast group can be expressed as:
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM, EXHAUSTIVE SEARCH AND NO ANTENNA SELECTION, FOR ANTENNA BS AND TWO

MULTICAST GROUPS WITH AND IN A RAYLEIGH FADING ENVIRONMENT

Fig. 4. Beampatterns for a far-field single-group multicasting scenario with
ULA and users, comparing between (a) using all an-

tennas, (b) the proposed algorithm selecting antennas, and (c) exhaustive
search to select the best antennas.

The worst-case SINR is lower bounded by

Using the bounds developed in [16],

where and
, the robust SINR constraints can

be approximated by

The robust beamforming with antenna selection algorithm then
proceeds simply by replacing with or in the SDP
problem formulations. This robust algorithm was applied to the
setup of Fig. 1 yielding the average additional transmit-power
represented by the dotted lines. To simulate imperfect CSI, two
scenarios were considered where the error vectors were
uniformly and randomly generated in a sphere centered at zero
with radii and . With increasing, more
transmit-power is needed to satisfy the SNR requirements, as
expected.

B. Two Multicast Groups

We now switch to simulations for the multi-group case, with
groups for clarity of exposition.

Rayleigh fading with antennas. In this setup, we
consider a BS with transmit-antennas transmitting to
two multicast groups where each multicast group consists of 5
users. The minimum required receive SINR is assumed to be 1
dB for each user in each group, and Rayleigh fading channel
vectors are generated. Table III reports the average and max-
imum increase in transmission power (compared to using all

antennas) that correspond to selecting antennas,
for the proposed algorithm, the exhaustive search, and the case
where only antennas are available such that no antenna se-
lection is performed. In addition, the average and maximum
number of SDP problems solved for the proposed algorithm and
exhaustive search are reported. The results emphasize the con-
clusions obtained for the single multicast group. For example,
if only RF chains are available, using the proposed al-
gorithm results in a 2.4 dB transmission power increase (com-
pared to using all antennas), and requires solving 7.5
SDP problems, on average. On the other hand, exhaustive search
results in 0.7 dB lesser transmission power (on average), but re-
quires solving 924 SDP problems. Finally, having the option
of selecting 6 antennas out of 12 saved 1.4 dB in transmission
power (using the proposed algorithm) compared to having only
6 antennas available.
To illustrate the effects of the minimum required receive

SINR and the channel conditions on the transmit-power, some
variations of the last setup were considered. For a minimum
required receive-SINR dB per user in each group, the
average transmit-power using all 12 antennas was 31.2 dBm,
whereas the average transmit-power after selecting 6 antennas
increased to 33.6 dBm. To simulate for better channel condi-
tions, each user’s channel was multiplied by a constant .
As a result, the average transmit-power decreased to 17.2 dBm
when all 12 antennas were utilized, and to 19.6 dBm when
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Fig. 5. Beampatterns for a far-field two-group multicasting scenario with
ULA and users, comparing between using all antennas and

the proposed algorithm selecting antennas.

6 antennas were selected. For a 12 dB minimum SINR, the
average transmit-power was 41 dB when all antennas were
used, and 44.4 dBm when 6 antennas were selected. When
each user’s channel was multiplied by , the average
transmit-power decreased to 27.2 dBm when all 12 antennas
were utilized, and to 30 dBm when 6 antennas were selected.
Far-field beamforming with ULA. Fig. 5 illustrates

the beampatterns for a particular far-field multicasting scenario
with ULA and users. The users are equally
divided into two multicast groups. The 16 users of the first mul-
ticast group have direction angles ( ) from to

with spacing between each user, while the 16 users of the
second multicast group have direction angles ( )
from to with spacing between each user. The min-
imum required receive-SINR was assumed to be 3 dB for each
user, and we set . Fig. 5 compares the beampattern
resulting from using all antennas with that resulting
from using the proposed algorithm to select antennas.
For this setting, the proposed algorithm selects the same 4 an-
tennas as the exhaustive search yielding the same beampattern.
The proposed algorithm (and exhaustive search) incurs addi-
tional transmit-power of only 1.66 dB (compared to using all
8 antennas).

C. Max-Min-Fair Beamforming and Spectral Efficiency
Considerations

Here, we consider the problem of maximizing the minimum
received SNR over all users with antenna selection, which is
described in Section V-B. In this setup, we considered a BS with

antennas, users, Rayleigh fading channels
and the transmission power was bounded below dB.

Fig. 6. Average spectral efficiency versus for antennas and
users.

Fig. 6 compares the following schemes: (a) Capacity achieving
transmit-covariance with exhaustive search antenna selection
(which corresponds to the multicast channel capacity with
antenna selection); (b) Capacity achieving transmit-covariance
with sparsity-inducing -norm squared approximation; (c)
Beamforming with exhaustive search antenna selection; (d)
Beamforming with sparsity-inducing -norm squared ap-
proximation; and, (e) Spatially white transmit-covariance with
exhaustive search antenna selection, as considered in [15]. Note
that for (c) and (d), beamforming implies rank-one transmit-co-
variance. For each scheme, the (average) maximum achievable
rate per unit bandwidth (which is the average spectral efficiency
given by in bps/Hz units, where is the
minimum received SNR among all users for each channel
realization, and denotes Monte-Carlo expectation over all
Rayleigh fading channel realizations) is plotted versus the
number of selected antennas .
Fig. 6 confirms that the previous conclusions for minimizing

the transmission power with SNR constraints are also valid
when antenna selection is jointly considered. For example, the
average spectral efficiency with beamforming decreases by less
than 0.5 bps/Hz when antennas are selected compared to
using all antennas, which is an insignificant decrease
compared to the reduction in RF chains. Moreover, the figure
shows that (b) and (d) are within 0.25 bps/Hz less spectral
efficiency than (a) and (c), respectively. On the other hand, (b)
and (d) required solving less than 5 SDP problems, on average,
while (a) and (c) required solving 210 SDP problems to select

or antennas. This emphasizes the effectiveness
of using the sparsity-inducing -norm squared approximation.
Finally, we see that (c) outperforms (e), or in other words beam-
forming outperforms using spatially white transmit-covariance,
since is not very small compared to . The performance
of beamforming becomes significantly better as increases,
whereas this advantage vanishes for smaller . The reason,
as explained in [7], is that every beamforming direction will
be nearly orthogonal to at least one user’s channel with high
probability when .
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VII. CONCLUSIONS

We studied the joint problem of multicast beamforming to
multiple multicast groups with antenna selection. The objective
is to select sparse beamforming vectors such that the transmis-
sion power is minimized, subject to the SINR constraints at all
subscribers. Instead of using the -norm to promote sparsity,
we argued that the mixed -norm squared offers a more pru-
dent group-sparsity inducing regularization for our purposes.
The reason is that it naturally (and elegantly) yields a semidef-
inite relaxation that is similar in spirit to the corresponding one
for the baseline multicasting problemwithout antenna selection,
considered in [18]. One interesting result is that the number of
transmit antennas can be considerably reduced with only min-
imal increase in the transmission power. We also showed that
our proposed algorithm performs joint antenna selection and
weight optimization at significantly lower complexity compared
to using exhaustive search for antenna selection, and at negli-
gible excess power. The novel algorithm can be combined with
admission control [12], and can be easily modified to obtain
sparse solutions for a wide class of non-convex QCQP prob-
lems, and applications where SDP relaxation is relevant.
Finally, developing custom algorithms for joint multicast

beamforming and antenna selection forMassive MIMO systems
[26] is of interest. We have preliminary work in this direction;
but striking the right balance between performance and com-
plexity in the large system regime requires a very different
approach from the one presented herein. We will therefore
report these findings in follow-up work.

APPENDIX

Proof of Proposition 1: Consider the singlemulticast group
scenario. In this case, the -norm reduces to the -norm and
problem (8) is expressed as

(22)

where is normalized by . Using
and , problem (22) is equivalent to

(23)

In order to transform (23) from the complex domain to
the real domain, we define , ,

, and such that . Now,
it is easy to see that

and . Thus, the
constraints , are equivalent to

These constraints can be expressed as the positive semidefinite
constraints (24) at the bottom of the page, , in the real do-
main.
The channel matrix can be transformed to the

real domain by defining ,
, and the rank-2

matrix . Hence, problem (23) can be
expressed in the real domain as

(25)

Finally, defining
such that , where

,

problem (25) can be expressed as

(26)

where , , and provide the four entries of
, for each and , by ensuring that:

(24)
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By dropping the constraint, problem (26) is
in the standard SDP form. Defining the vector

where is
an auxiliary vector and is a 2 1 vector, problem
(26), which is equivalent to the original problem (22), can be
expressed in the following standard QCQP form:

(27)

Introducing the Lagrange multipliers ( ), ( ),
and defining and

the Lagrangian of problem (27) is
,and the dual problem is

It is easy to see that

if
otherwise.

The dual problem can thus be expressed as

(28)

which is an easily solvable convex SDP. Finally, it is easy to
see that the dual of the SDP (28), which is the bi-dual of (22), is
problem (23) after dropping the constraint [22].
Also, the dual of the rank-relaxed problem (23) is problem (28).
The duality results are easily extended to the multiple mul-

ticast groups scenario by extending the matrix to
and adding replicates for the positive semidefinite constraints

, , in (25) corresponding to each ,
. The rest of the steps are a straightforward ex-

tension from the single multicast group case.
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