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Exploiting Convex Geometry in Covariance Domain
Xiao Fu, Member, IEEE, Wing-Kin Ma, Senior Member, IEEE, Kejun Huang, Student Member, IEEE, and

Nicholas D. Sidiropoulos, Fellow, IEEE

Abstract—This paper revisits blind source separation of instan-
taneously mixed quasi-stationary sources (BSS-QSS), motivated
by the observation that in certain applications (e.g., speech) there
exist time frames during which only one source is active, or locally
dominant. Combined with nonnegativity of source powers, this
endows the problem with a nice convex geometry that enables ele-
gant and efficient BSS solutions. Local dominance is tantamount
to the so-called pure pixel/separability assumption in hyperspectral
unmixing/nonnegative matrix factorization, respectively. Building
on this link, a very simple algorithm called successive projection
algorithm (SPA) is considered for estimating the mixing system
in closed form. To complement SPA in the specific BSS-QSS
context, an algebraic preprocessing procedure is proposed to
suppress short-term source cross-correlation interference. The
proposed procedure is simple, effective, and supported by theo-
retical analysis. Solutions based on volume minimization (VolMin)
are also considered. By theoretical analysis, it is shown that
VolMin guarantees perfect mixing system identifiability under an
assumption more relaxed than (exact) local dominance—which
means wider applicability in practice. Exploiting the specific
structure of BSS-QSS, a fast VolMin algorithm is proposed for
the overdetermined case. Careful simulations using real speech
sources showcase the simplicity, efficiency, and accuracy of the
proposed algorithms.
Index Terms—Blind source separation, local dominance,

pure-pixel, separability, volume minimization, identifiability,
speech, audio.

I. INTRODUCTION

W E consider the problem of blind source separation of
instantaneous mixtures of quasi-stationary sources

(BSS-QSS), whose second-order statistics (SOS) vary from
frame to frame, while remaining approximately constant within
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each frame. Such SOS variations can be exploited to estimate
the mixing matrix, or its inverse; see [3] for a recent overview.
BSS-QSS is practically important because many types of
mixtures can be approximately modeled as QSS, with speech
and audio being two very familiar signal processing examples
[4], and with applications in teleconferencing, mobile commu-
nications, and pre-processing for speech recognition, to name
a few.
BSS-QSS is usually treated as a joint (approximate) diago-

nalization (JD) problem [5]–[7], or as a decomposition problem
that can be cast within the framework of parallel factor analysis
(PARAFAC) [8]–[10] (see also [11], [12] for a subspace varia-
tion). PARAFAC treats BSS-QSS as a three-way tensor decom-
position problem, and it can ensure identifiability of the mixing
system even in under-determined cases where the number of
the sources exceeds that of the sensors. JD, on the other hand,
tries to recover the inverse (or pseudo-inverse) of the mixing
system, which only exists in the (over-)determined case. When
applicable, JD algorithms often exhibit better efficiency than
PARAFAC-based ones.
In this paper we take a different approach. We begin with

the adoption of one additional assumption regarding the
sources—namely, local dominance—and take advantage of it to
develop an alternative BSS-QSS framework. In the context of
this paper, local dominance means that, among a collection of
SOSs estimated locally in time, there are particular time instants
in which the SOSs are dominated by one source. However, we
do not know where these locally dominant SOSs are, and the
SOSs in the other time instants comprise contributions from
multiple (possibly all) sources. Local dominance is considered
a reasonable assumption for certain ‘sparse’ sources such
as speech; e.g., speech contains unvoiced segments between
utterances, and such segments occur quite frequently.
It is interesting to note that assumptions that are conceptu-

ally similar to local dominance have appeared in several rather
different contexts. The one that is closest to the BSS area can
be found in the prior works under the framework of BSS using
time-frequency distributions (BSS-TFD), wherein sources are
assumed to exhibit some level of sparsity and disjointness in the
time-frequency (TF) domain [13]–[18]. This is a form of local
dominance that has proven to be helpful in blindly separating
speech and audio sources, even in the under-determined case.
TF sparsity ideas later evolved into sparse component analysis
(SCA) ([3], Chapter 3), wherein some advanced sparsity-pro-
moting tools are applied to find sparser source representations
in various transform domains. On the other hand, when we look
at the remote sensing field, there is an important research topic
called hyperspectral unmixing (HU), which essentially deals
with BSS. There, the use of local dominance is extensive and
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has a long history; see, e.g., [19] and the references therein. In
other topics such as non-negative BSS (nBSS) for image separa-
tion, non-negative matrix factorization (NMF) and text mining,
the local dominance assumption and its exploitation have also
received significant attention [20]–[22]. In these concurrent de-
velopments, local dominance is identical to the pure pixel as-
sumption in HU [19] and separability [23]/sufficient spread [24]
conditions in NMF.
We should however distinguish how approaches arising

from the aforementioned contexts exploit local dominance. In
sparsity-based BSS-TFD or SCA, the general rationale is to de-
tect locally-dominant data points using some problem-specific
structures resulting from local dominance; e.g., by the rank-one
structure of the local correlation matrix or the quadratic TF
point [13]–[16], or by some measures concerning certain
low-variance or high-correlation structures [17], [18]. In such
approaches, a clustering algorithm is usually required to group
the detected data points for constructing an estimate of the
overall mixing system. In HU, nBSS and NMF, a different
way is sought. Specifically, the sources in those contexts are
non-negative. By utilizing the source non-negativity, together
with the local dominance assumption, an elegant concept called
convex geometry was used to devise approaches for estimating
the mixing system. While convex geometry has been recog-
nized to be powerful in applications such as HU, it has not been
considered for the BSS-QSS application—possibly because
speech and audio sources do not seem to fall into the nBSS
problem class at first look.
The starting point of this work is to connect the seemingly

different topics of BSS-QSS and convex geometry-based
nBSS/NMF, thereby providing a novel BSS-QSS framework.
We should additionally mention that NMF has recently been
considered for blind audio separation [25], [26]. The NMF used
there is based on a statistical generative model, and is different
from the locally dominant and convex geometry model used in
this work.
Contributions:We begin by showing that under the local dom-
inance assumption and the non-negativity of source powers, the
BSS-QSS problem can be converted to a signal model that ad-
mits nice convex geometry, and thus be solved in closed form.
To be specific, simple manipulation of the SOS enables using
the so-called successive projection algorithm (SPA) [19], [27],
[28] from nBSS. Exploiting the underlying convex geometry,
the system response to each source can be determined by SPA
in closed form, in over-determined as well as under-determined
cases. On the other hand, our preliminary experiments revealed
that SPA is sensitive to short-term source cross-correlations,
which sometimes yield serious performance degradation. We
propose a simple algebraic pre-processing (pre-whitening and
subspace projection) step to overcome this problem in the
over-determined case. The proposed pre-processing is com-
putationally very simple, and its effectiveness is backed by
theoretical analysis. In practice the local dominance assump-
tion may only hold approximately1. When this is the case, we
propose to use volume minimization (VolMin) [29], [30] instead
of SPA to exploit the convex geometry in spatial-covariance
domain. VolMin was empirically known to be robust to inexact

1Local dominance was originally defined [20] as the ideal situation where
only a single source is active, instead of one source being dominant while others
can be present at lower levels—as the name might suggest.

local dominance conditions, but here we go a step further—we
provide a theoretical identifiability analysis that shows that
VolMin can perfectly identify the mixing system under a condi-
tion that is more relaxed than the exact local dominance, and is
more readily fulfilled in BSS-QSS applications. Exploiting the
specific structure of BSS-QSS, a fast VolMin algorithm is pro-
posed for the over-determined case, and is shown to guarantee
convergence to a Karush-Kuhn-Tucker (KKT) [31] point of the
corresponding optimization criterion. Careful simulations using
real speech sources showcase the simplicity, efficiency, and
accuracy of the proposed algorithms. Extensions that enable
separating mixtures of dense sources (i.e., music) and convolu-
tive mixtures of speech sources are also considered, following
the joint sparsifying-transform approach ([3], Chapter 3) and
the frequency-domain approach [4], [32], respectively.
Early versions of parts of this paper were presented in confer-

ence form at ICASSP [1], [2]. This journal version includes de-
tailed proofs of our previous results, plus the new fast VolMin-
type algorithm, its KKT point analysis, the new sufficient con-
dition for identifiability and its proof, and extensive simulation
results.
For the purpose of reproducible research, we provide

the source code of the proposed algorithms online; see
http://www.ee.cuhk.edu.hk/wkma/publications/bss_cg.rar.

II. CONVEX GEOMETRY PRELIMINARIES

This section briefly mentions several preliminary concepts on
convex geometry, which we will extensively use. Given a set of
real-valued vectors , we have the following
definitions.
Definition 1: The affine hull of is defined as

Definition 2: The convex hull of is defined as

Definition 3: A convex hull is called
a simplex if are affinely independent, i.e.,

are linearly independent.
Definition 4: The convex cone of is defined as

Definition 5: Let , and denote
for convenience. The dual cone

of is

Convex cones and dual cones have several nice properties.
The following lemmas will be needed in our context:
Lemma 1: If and are convex cones, and , then
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Fig. 1. Illustration of affine hull, convex hull and convex cone for the three
vectors case. In this example, is the entire plane containing
the shadowed triangle area; is the shadowed triangle area;
and is the whole space among the three rays corresponding
to . The set is also a simplex in this example, as

and are linearly independent.

, where denotes the dual cone of cone .
Lemma 2: If is invertible, then .
Readers are referred to [33], [34] for details.
Fig. 1 shows an example to illustrate how affine hull, convex

hull and convex cone may look like. If is a
simplex, then its set of vertices is itself as shown
in the figure.
Note that all the above concepts are also applicable to

complex-valued , since a complex-valued vector
can be equivalently represented by a real-valued vector

.

III. SIGNAL MODEL AND LOCAL DOMINANCE

The signal model used in this paper is standard in the
BSS-QSS context, and is concisely described as follows. We
consider the linear instantaneous mixture model:

(1)

where denotes the received
signals, denotes sources
( is assumed to be known), is
an unknown mixing system, and denotes the system
response to source . Our objective here is to blindly identify
the mixing system , which can then be used for separating the
sources. The sources are assumed to be wide-sense quasi-sta-
tionary with quasi-static period —that means that 's are
nonstationary but their SOSs remain static under any length-
time window. By also assuming that the sources are zero-mean
and uncorrelated from one another, we have

where denotes Hermitian transpose ( is reserved for conjuga-
tion), , and ,
for any , is the average power of source
for the -th time frame.

Fig. 2. Illustration of local dominance using two real speech sources. The shad-
owed areas are time intervals (whichmay contain many time frames) where only
one source is active, or dominant.

Let us denote

to be the local covariance of the received signals in time frame
, which in practice can be estimated by local sampling

Under the above signal model, can be expressed as

(2)

We begin by adopting the (exact) local dominance assump-
tion, illustrated in Fig. 2 with a practical example comprising
two real speech sources.

(local dominance [20]) For each source , there exists
a time frame, indexed by , such that and

for all .

As mentioned in the Introduction, assumptions similar to
have been considered previously in the sparsity-based

BSS-TFD/SCA literature [13]–[18]. Generally speaking, the
strategy in these prior works is to detect locally dominant
TF areas, and then estimate the system responses from the
detected TF areas. The same strategy can also be applied to the
BSS-QSS problem here, and herein we describe how this can
be done. Under , the local covariance model (2) at locally
dominant frames can be written as

(3)

Hence, if we know where the locally dominant frames are, then
we can retrieve 's up to a scaling factor by computing the prin-
cipal eigenvector of the locally dominant . By also noting
that (3) takes a rank-one structure, a practically working algo-
rithm is as follows: i) detect locally dominant frames by eval-
uating the ranks of all 's; ii) extract the principal eigen-
vector of each detected ; iii) apply a -means clustering
algorithm to the obtained principal eigenvectors, and then use
the centroids of the clusters to construct the mixing matrix
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. The above procedure will be called the clustering-based al-
gorithm in the sequel.
The existing BSS-TFD and SCA algorithms [13]–[18] ba-

sically follow the same clustering-based procedure described
above, and their differences mainly lie in the detection criteria in
Step i), which depend on the type of transform used. We should
also note that the non-negativity of the source powers 's
have not been exploited in BSS-TFD or SCA. In the next sec-
tions, we will explain how the non-negativity property enables
us to convert (2) into a signal model with a nice convex ge-
ometry structure, which will then be exploited to come up with
different BSS-QSS algorithms.

IV. LOCAL DOMINANCE-BASED BSS-QSS
In this section we develop an algebraically simple BSS-QSS

method, accomplished by exploiting the geometry induced by
and nonnegativity of source powers.

A. A Virtual Mixture Model and Underlying Convex Geometry
Let us vectorize all the local covariances in (2) to obtain

(4)

where denotes the vectorization operator (note that
denotes the corresponding inverse operation, which

will be used later);

(5a)

(5b)

in which and denote the Kronecker and Khatri-Rao
product, respectively. One can observe from the above equa-
tions that if are estimated, then we can easily
retrieve the corresponding (up to a scale factor) by

where denotes the principal eigenvector of . Hence,
the BSS-QSS task can be posed as that of estimating .
We make two assumptions for the model. The first is

which holds under some fairly mild conditions in theory and is
easy to satisfy in practice; e.g., holds almost
surely if is drawn from a continuous distribution and

[9]. The second, which is without loss of generality (w.l.o.
g.), is that for .2
Now, we give a formulation that links up the model in (4) and

convex geometry. By , we have

(6)
and

(7)

2In fact, any scaling of the 2-norm of can be absorbed in the power of the
-th source, i.e., , where can

be considered as the equivalent unit 2-norm system response of source and
the new source .

Fig. 3. Geometry of data points and the underlying convex
hull. The visualization in this figure (and the forthcoming figures in the sequel)
is by assuming that and that the viewers are facing the affine hull

.

where is a vector whose elements are all equal to one. Hence,
we can further manipulate the signal model by constructing

(8)

where following
(7). By the nonnegativity of , it follows that

(9)

The virtual mixture model in (8)–(9) comprises nonnegative
sources that sum to one at all ‘times’, . The convex geom-
etry that underlies (8)–(9) can be readily visualized by the fact
that

(10)

that is, lives in the convex hull spanned by .
Also, are the vertices of the convex hull, since
is of full column rank. Fig. 3 gives an illustration of the geom-
etry of (10) for . The take-home point is that estimating

boils down to estimating the vertices of a convex
hull; and, under is ‘touched down’ by at those
where the -th source is locally dominant. Finding those ver-

tices is an nBSS problem, as those encountered in HU [35] and
NMF [28].

B. Solution via Successive Projection Algorithm

Under , the aforementioned convex geometry problem
can be solved by finding , i.e., the indices of the
locally dominant frames, since for all . Here, we
achieve this task by applying the so-called successive projection
algorithm (SPA) [19], [27], [28]. The main idea of SPA is that
we can find a locally dominant frame by

(11)
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The reason is that

(12)

which is by the triangle inequality and nonnegativity of .
Since is of full column rank, equality in (12) holds if and
only if is a unit vector—which is equivalent to saying that
frame is locally dominant. Moreover, by modifying (11), we
can locate other locally dominant frames: suppose that we have
found locally dominant frames, denoted by
(where ). By letting , where

, we can obtain the next locally dominant frame by

(13)

where denotes the orthogonal complement projector of .
In particular, the presence of in (13) nulls out the pre-
viously found system responses from the data, so
that (13) can find a new source's locally dominant frame; see
[19], [28] for more details. The resulting SPA-based BSS-QSS
algorithm is summarized in Algorithm 1.
SPA has several very attractive features. The most appealing

is its simplicity: combined with adaptive orthogonal projection
algorithms, SPA is within reach of real-time implementation. In
our specific context of BSS-QSS, the condition
is easy to satisfy, even in the under-determined case where the
number of sources exceeds the that of the sensors (recall that

is of size ). Last but not least, Gillis and Vavasis
have proved that SPA is robust to bounded noise [28]: if

, where , then
SPA identifies the columns of up to error , where

is the condition number of , and
and denote the smallest and the largest sin-

gular values of , respectively. This robustness result is very
desirable in practice. Despite the advantages described above,
our experiments have revealed that directly applying SPA in
some BSS-QSS applications such as speech separation might
sometimes yield unexpectedly inaccurate estimation of in
practice; this will be demonstrated in the simulation section. The
main reason is that subtle short-term source cross-correlations
occasionally combine to generate a noise term that is be-
yond the tolerance level of SPA. Hence, to enhance the perfor-
mance of SPA, we are motivated to deal with the cross-correla-
tion issue in advance.

C. Pre-Processing: Cross-Correlations Mitigation
As discussed previously, short-term source cross-correlations

give rise to modeling errors and subsequently can lead to per-
formance deterioration. To develop a remedy, we first recon-
sider the local covariance model with source cross-correlations
incorporated. Assuming that may be correlated at times,
the model in (4) should be modified as

(14)

where for
, and may contain non-zero off-diagonal elements.

Let as before. Also let

Fig. 4. The values of the source powers and the cross-correlation terms of two
real speech sources over .

, which represent the cross-correlation components. As
an example, in Fig. 4 we show the cross-correlation component

of two real speech sources with respect to .We see that
the cross-correlations are weak and intermittent, but not zeros at
all times. Taking the cross-correlations into account, the model
of in (4) is replaced by

(15)

where and are defined as
follows

(16a)
(16b)
(16c)
(16d)
(16e)
(16f)
(16g)
(16h)
(16i)
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Fig. 5. Geometry of using three real speech sources and
a randomly generated mixing system; source duration seconds;

.

We illustrate the impact of on the signal geometry
in Fig. 5, using three real speech sources and a randomly
generated real-valued . We observe that owing to the exis-
tence of , some of the 's live outside the convex
hull , which violates the underlying signal
geometry for applying SPA (cf. Fig. 3).
Here, we propose a simple and efficient cross-correlation

suppression method for the over-determined case (i.e.,
). To begin, let us assume

In practice, we can apply pre-whitening on to
transform to a unitary matrix, provided and that the
sources are uncorrelated in the long term; see, e.g., [3], [36].
Under , our rationale of cross-correlations suppression is
to project onto a principal component subspace. Let

(17)

and consider its eigen-decomposition , where is
the (unitary) eigenvector matrix, and is the (diagonal) eigen-
value matrix in which the diagonal elements or eigenvalues are
arranged in descending order. We use the following projection
process

(18)

to mitigate the undesired term . The intuition is that the
main term is often much stronger than the cross-corre-
lation term in practice, and therefore , which con-
tains the first principal components of , should be domi-
nated by .
By simulations, we found that the projection process in (18)

can lead to significant performance improvements. Here, we es-
tablish a theoretical justification by modeling and as
random processes. Let us assume

Each is a wide-sense stationary
(WSS) random process, each

is a zero-mean circularly symmetric WSS random
process, and all and are statistically uncorrelated
of one another.

Fig. 6. Geometry of , where is constructed following (8) ex-
cept that is replaced by and that are pre-whitened; the
other settings are the same as those in Fig. 5.

We show that
Proposition 1: Suppose that – hold true, that
such that , and that

(19)

Then, the projection process in (18) completely eliminates the
cross-correlation term and keeps the main term intact; i.e.,

Proposition 1 implies that if the sources exhibit significant
frame-wise power variations and the cross-correlations are
weak, then the projection process in (18) will attenuate the
short-term cross-correlations very substantially for sufficiently
large . The proof of Proposition 1 is relegated to Appendix A.
In Fig. 6, we show the geometry of the projected data after

pre-whitening and the projection in (18), using the same real
speech sources and setup as those used in Fig. 5. As can be seen
in the figure, the data points now live well in ,
an indication of successful cross-correlations elimination.
Hence, we may safely run SPA by applying it on the projected
data. In the sequel, we will refer to this procedure (specifically,
pre-whitening, projection in (18), and then SPA) as the pro-
jected SPA (ProSPA).
ProSPA offers an efficient and simple-to-implement solution

to BSS-QSS under and over-determined mixing systems.
But there are more challenging cases, namely, that might
not hold well enough in some situations; for example, when is
relatively large and/or the recording is relatively short, it might
be difficult to find frames exactly dominated by one source. The
first question is whether it is still possible to exploit the vir-
tual mixing model in (4) and the nonnegativity of in such
cases? Second, the proposed short-term cross-correlations sup-
pression method only works in the over-determined case. Can
we fend against short-term cross-correlations in the under-de-
termined case? These questions will be addressed in the next
section.

V. VOLUME MINIMIZATION-BASED BSS-QSS
In this section, we relax the local dominance assumption
. To exploit the virtual mixture model (8) and its underlying

geometry under such circumstances, we propose to employ the
volume minimization (VolMin) criterion, which was originally
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Fig. 7. Geometry of VolMin. The minimum-volume enclosing simplex is
readily seen to be in this case.

used in HU. In HU, VolMin was empirically found to be
robust to violation of the pure pixel assumption, i.e., the local
dominance assumption in our context. We will show that this is
indeed true in theory, by proving a new sufficient condition for
perfect identifiability of VolMin. Then, we explore the special
signal structure of BSS-QSS to propose a new efficient VolMin
algorithm for the over-determined case.

A. Volume Minimization Criterion and New Identifiability
The intuition of VolMin is as follows. As revealed in (10),

we have . When ,
one can always find a simplex on , such that
the data points are all enclosed by this simplex
[30]. In the so-called Craig's belief [37], it is believed that as
long as there are enough data points and they are sufficiently
spread in , a data-enclosing simplex with
the minimum volume should be itself.
Hence, estimating amounts to finding a full-rank matrix

such that corresponds
to the minimum-volume enclosing simplex of
on . Fig. 7 illustrates this intuition for .
When is a square matrix, was adopted as a mea-

sure of the volume of its simplex [29]. Since in our case is
usually tall, we employ the Gram matrix form to
measure the volume; see, e.g., [33]. The VolMin criterion for
BSS-QSS is formulated as follows:

(20a)

(20b)
(20c)

where represents the -th column of for
. In VolMin, a fundamentally exciting challenge

is whether one can prove its identifiability, thereby providing
mathematically precise and non-heuristic explanations of
Craig's belief. Identifiability of VolMin was previously estab-
lished under the pure pixel assumption [30], which is and
is believed to be a loose sufficient condition. Here, we provide
a more relaxed sufficient condition3 under which Problem (20)
uniquely identifies (up to a permutation ambiguity). To
proceed, let

and consider the following assumption:

The matrices and satisfy .
Also, satisfies

i) , where is a second order cone

ii) , for any unitary matrix
that is not a permutation matrix.

We show that is a sufficient condition for identifiability of
VolMin:
Theorem 1: Under , the VolMin criterion uniquely identi-
fies both and up to a permutation. Specifically, any optimal
solution to Problem (20) under takes the form

where is a permutation matrix.
The proof of Theorem 1 can be found in Appendix B. We

provide intuition regarding and Theorem 1 using graph-
ical examples for ; see Fig. 8. In these examples, we
visualize the cones on the hyperplane . Specifically,
corresponds to a ball, is an equilateral triangle and
is a polytope inside this equilateral triangle. The columns of
also span equilateral triangles such that each facet is tangent to
the ball corresponding to ; note that these equilateral triangles
determined by are actually rotated versions of the triangle de-
termined by . In Fig. 8(a), we show a situation where is
satisfied as is contained in and no rotation of can
contain . Fig. 8(b) shows a situation where Conditions
(i)–(ii) are violated. In Fig. 8(c), Condition (i) is satisfied while
Condition (ii) is not, as one can see that there is a such that

. In Fig. 8(d), we show a situation where
holds. It is clear in this figure that is a special case

of and thus our proposed sufficient condition for identifi-
ability of VolMin is tighter than the previous one in [30].
From a practical point of view, if each source overpowers

the rest in some frames, then is likely to be fulfilled. Note
that we also want each source to prevail in several frames,
so that exhibits roughly symmetric shape in
[cf. Fig. 8(a)]. In some BSS-QSS problems such as speech
separation, such rough symmetric shape of is empir-
ically true. Hence, is easier to satisfy than for such
BSS-QSS problems.

B. Over-Determined-Case Algorithm: Alternating
Optimization
Under can be estimated using any of the existing

VolMin algorithms [29], [30], albeit their computational cost
can be a burden, due to the form of the VolMin criterion in
(20). In the specific context of over-determined BSS-QSS, how-
ever, VolMin can be significantly simplified by exploiting the

3Condition and the proof of Theorem 1 were developed during X. Fu's
visit to the University of Minnesota, in the fall of 2013. At the same time, W.-K.
Ma collaborated with C.-H. Lin and C.-Y. Chi, from National Tsinghua Univer-
sity, Taiwan, and they independently proved another sufficient condition [38],
based on a different approach. We would like to acknowledge that these were
parallel independent developments.
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Fig. 8. Some examples of by assuming that and that the
viewers are facing the hyperplane from the positive orthant. In sub-
figures – , the inner circle corresponds to , the shadowed polytope cor-
responds to , the outer circle corresponds to

, and the red dots correspond to 's.

special signal structure, as we explain next. Recall that in the
over-determined case, we can use the pre-whitened and prin-
cipal subspace-projected data
as input, for fending against the short-term source cross-corre-
lation problem. As a result, the operational is unitary, and the
corresponding is semi-unitary; namely, under ,

where denotes the element-wise (Hadamard) product. There-
fore, we can add a ‘property restoring’ constraint to the VolMin
criterion to ensure that is likewise semi-unitary. Since

for any semi-unitary , we can convert
Problem (20) with to the following equivalent form:

(21)

where .
Problem (21) is non-convex, but it can be tackled using al-

ternating block-coordinate optimization, which admits simple
block updates as we explain next. In alternating optimization
(AO) we alternate between two conditional updates; namely,
via solving Problem (21) with respect to for fixed, and
that with respect to for fixed, respectively. Updating for
a fixed is simple; it admits an optimal solution via singular
value decomposition (SVD) [39]–[41]

(22)

where and are the left and right
singular vector matrices of . Updating for a fixed is

even simpler: the problem is separable with respect to for
. Furthermore, since is semi-unitary,

(23a)

(23b)

(23c)

where is the probability
simplex. Hence, instead of solving (23a) directly, we can solve
(23c) to obtain . Note that (23c) aims at finding the projection
of on , which can be solved very easily by
a simple ordering approach with complexity ; see
[42] for a detailed implementation.
The above AO algorithm for VolMin (VolMin-AO) is sum-

marized in Algorithm 2. It features the following convergence
property:
Proposition 2: Every limit point of the solution sequence cre-
ated by Algorithm 2 is a KKT point of Problem (21).

Proof: The proof is based on a convergence result for the
maximum block improvement (MBI) algorithm [43].We skip the
description of MBI owing to space limitation, but point out key
results and connections to our problem. MBI can be regarded as
a variation of alternating optimization, where it selects to update
the block that yields maximum improvement of the objective in
each step.WhileMBI and alternating optimization are generally
different, they are identical in the two-block case. It was shown
that every limit point of the solution sequence generated by an
MBI algorithm is a KKT point if i) all the constraint sets are
compact, and ii) the partial problems are optimally solved in all
iterations; see [43]. Since the above two conditions are satisfied
in our case, we obtain the desired result.

C. VolMin for Under-Determined BSS-QSS
Note that our VolMin identifiability condition requires a

full column-rank , but has no such restriction on , which can
be fat. As a result, VolMin can be naturally applied to the under-
determined case (with respect to ), albeit outliers caused by
short-term cross-correlations of the sources (cf. Fig. 5) can no
longer be eliminated via our simple cross-correlations suppres-
sion method in Section IV.C. In such a case, we propose to em-
ploy the simplex identification via split augmented Lagrangian
(SISAL) algorithm by Bioucas-Dias [29]. SISAL is an outliers-
robust variation of the VolMin criterion. It modifies the VolMin
criterion as

(25)
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where is an ele-
ment-wise hinge function, and is a regularization param-
eter. The idea of SISAL is to apply a soft penalty in
place of the hard constraint . In particular, pe-
nalizes negative values of elements in , which correspond to
outliers outside the desired simplex. A few outliers are permitted
(and discounted) in this way, thereby endowing the method with
some robustness against outliers. Notice that SISAL requires
that be a real-valued square matrix, i.e., . In
our signal model, this can be accomplished by concatenating
the real and imaginary parts of , and using principal com-
ponent analysis-based or other methods [30] to reduce the di-
mension before applying SISAL.

VI. SIMULATIONS

We first test the proposed algorithms using instantaneous
mixtures. Then, an extension to convolutive mixtures will be
considered.

A. Instantaneously Mixed Speech Sources

1) Simulation Settings: Throughout this subsection, real
speech sources are used. For each independent trial, the
sources are randomly picked from a data base containing 23
different speech segments. The speech segments are sampled
at 16 KHz. For each simulation trial, we use a real-valued
mixing matrix , which is also randomly generated following
the i.i.d. zero-mean unit-variance Gaussian distribution and
each column of is normalized to be of unit 2-norm. The
results are averaged over 1000 trials. To get more frames,
we employ local averaging windows with 50%-overlap; i.e.,

. Moreover, we consider
noisy received signals

where is Gaussian noise with zero mean and variance .
Under such circumstances, the local covariances should bemod-
eled as

(26)

In our simulations, we remove from by the following
procedure [12]: It can be easily shown that for locally dominant
frames (or, more generally, for frames satisfying ,
where counts the nonzero elements in ), the least signifi-
cant eigenvector of lies in the noise subspace. Hence, we
can estimate by

(27)

where denotes the magnitude-wise smallest eigen-
value of , and then set as noise-removed
local covariances. In the over-determined case, we also apply
pre-whitening to .
We define the signal-to-noise ratio (SNR) as

(28)

where is the total number of available samples. The average
mean square error (MSE) is adopted as the performance mea-
sure, which is defined as

(29)

where is the set of all permutations of and
are the ground truth of the th column of the mixing matrix

and the corresponding estimate, respectively.
In all the simulations, VolMin-AO is initialized by ProSPA,

and stopped by checking the absolute change of the objective
value. Specifically, let be the objective value of the opti-
mization criterion of Algorithm 2 at iteration . We terminate
the algorithm when . All algorithms are
implemented in Matlab codes and the simulations are carried
out in a computer with an i7 CPU @3.40 GHz and 4 GB RAM.
2) Simulation Results: We first test the proposed algorithms

in the over-determined case. We also include several BSS
algorithms developed under different frameworks as bench-
marks. Specifically, they are FFDIAG [6], which is known
to be a competitive algorithm under the JD-based BSS-QSS
framework; BGWEDGE [7], which is also a JD algorithm that
adopts an advanced weighting strategy; FastICA [45], which is
a popular algorithm under the independent component analysis
(ICA) framework; and the clustering-based algorithm reviewed
in Section III, which is inspired by the way BSS-TFD and
SCA algorithms make use of local dominance, particularly,
the algorithms in [14], [15], [18]. For fairness, all algorithms
operate on the same set of (pre-whitened) local covariances
(except for FastICA, which directly operates on the received
signals).
Fig. 9 shows the MSEs of the estimated by the proposed

algorithms, when and the source du-
ration is 6 seconds. We see that the most promising algorithms
under these settings are ProSPA, VolMin-AO and the JD-based
algorithms. Specifically, one can see that when the SNR is
smaller than around 24 dB, ProSPA and VolMin-AO provide
much better MSE performance than the benchmark algorithms.
For dB, FFDIAG and BGWEDGE catch up and
yield lower MSEs. Also, notice that ProSPA and VolMin-AO
yield essentially identical MSE performances, which means
that is generally satisfied under such settings. In addition,
one can observe significant MSE performance improvement
from the original SPA to ProSPA. This verifies that short-term
source cross-correlations do exist in practice, and that the
proposed cross-correlations suppression method can handle the
issue very effectively.
Table I shows the corresponding average runtimes of the al-

gorithms. It can be seen that SPA exhibits quite competitive run-
time performance—it is at least 20 times faster than the bench-
marked algorithms in this simulation. ProSPA is essentially as
fast as SPA since the projection procedure costs very little time.
VolMin-AO takes a little bit more time while is still 19 times
faster than the JD-based algorithms.
Fig. 10 shows the average signal-to-interference-plus-noise-

ratio (SINR) of the unmixed signals by the various BSS algo-
rithms. The evaluation procedure follows that in [46], wherein
minimum-mean-square-error (MMSE) unmixing is employed.
Readers are referred to [46] for the details. We see that the SINR
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Fig. 9. The MSEs of the estimated mixing system of the algorithms under dif-
ferent SNRs; ; source sec.

TABLE I
THE AVERAGE RUNTIMES OF THE ALGORITHMS
CORRESPONDING TO THE SIMULATION IN FIG. 9

Fig. 10. The average SINRs of the algorithms under different SNRs;
; source sec.

performance differences are not as significant as the MSE in
Fig. 9, although the two follow a similar trend. In particular,
VolMin-AO and ProSPA generally give the highest SINRswhen
SNR is lower than 24 dB, and the JD-based algorithms exhibit
slightly better SINRs when dB.
In Table II, we show the MSEs and runtimes of the algo-

rithms when the number of sources, , changes. Here, we fix
dB and take FFDIAG as benchmark since it ex-

hibits better low-SNR performance compared to other bench-
marked algorithms. When , the MSE performance of

TABLE II
THE MSES AND RUNTIMES OF THE ALGORITHMS FOR VARYING

NUMBER OF SOURCES; SOURCE SEC.;
dB

TABLE III
THE MSES AND RUNTIMES OF THE ALGORITHMS FOR VARIOUS FRAME
LENGTHS; SOURCE SEC.; DB

TABLE IV
THE MSES AND RUNTIMES OF THE ALGORITHMS UNDER VARIOUS SOURCE

DURATIONS; DB

ProSPA is comparable to those of VolMin-AO and FFDIAG.
The MSEs of ProSPA become larger when , as it
is harder to get locally dominant frames when the number of
sources is large. The MSEs of VolMin-AO are still competitive
when . This verifies our claim in Theorem 1, i.e.,
that the VolMin criterion can work well even when does
not hold exactly. By taking the runtime performance into ac-
count, ProSPA is the most attractive algorithm when ,
while VolMin-AO provides a good balance between MSE and
runtime when .
Similar results can be found in Tables III–IV, where we in-

vestigate how the performance of the algorithms scales with
the frame length and source duration, respectively. Note that
ProSPA works better for and source duration
seconds, i.e., cases in which is more easily fulfilled. Also
note in both tables that VolMin-AO is more robust to changes
of the parameters, as it does not assume .
In Fig. 11, we show the MSEs of the algorithms in an under-

determined case where . We apply SPA and the
VolMin-based SISAL algorithm to estimate the mixing system;
the regularization parameter of SISAL is set to be in
this simulation. As FFDIAG is no longer applicable in this case,
we benchmark the proposed algorithms using the PARAFAC by
simultaneous diagonalization (PARAFAC-SD) algorithm [9],
[47]. Note that VolMin-SISAL yields the best estimation of the
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Fig. 11. The MSEs of the estimated mixing system of the algorithms under
different SNRs; ; source sec.

mixing system, the MSEs of which are around 5 dB lower than
those of PARAFAC-SD. Also notice that evenwith the existence
of source cross-correlations, the closed-form solution, i.e., SPA,
still gives reasonable estimation results, and thus can serve as
initialization of other algorithms.

B. Extension 1: Separating Music Sources

1) Joint Sparsifying Transform: Music sources generally do
not satisfy the local dominance assumption . The reason is
that music, unlike speech, does not have many pauses in gen-
eral. Nevertheless, our proposed algorithms can still be applied
to music sources by leveraging prior work on sparse compo-
nent analysis (SCA) ([3], Chapter 10). SCA first transforms
the mixtures to a transform domain where the source compo-
nents are believed to be sparse, e.g., through the short-term
Fourier transform (STFT) or a compressive sensing-based joint
sparsifying transform; then, any local dominance-based algo-
rithm can be applied. Taking STFT as an example, the mixture

and its transform-domain representation have the
following relationship:

where denotes the index of the time window for
applying the Fourier transform, is the index
of the frequency bins, and
and are the STFTs of the
mixtures and the sources at time-frequency point , respec-
tively. Notice that is expected to be sparse even if is
not, since not all sources have non-zero frequency components
at all frequencies. Hence, local dominance is easier to be ful-
filled in the time-frequency domain.
2) Simulation Settings and Results: In Table V, we show the

results of applying ProSPA and VolMin-AO to separate music
sources. The results are averaged over 100 trials. At each trial,
the sources are randomly picked from 11 music sources, with
6-seconds-long duration and sampled at 16KHz. The transform-
domain algorithms TIFROM [17] and TIFCOR [18], which also
make use of local dominance, are included as benchmarks. We

TABLE V
THE MSES OF THE ALGORITHMS FOR VARYING NUMBER OF MUSIC SOURCES;

SOURCE SEC.;

use STFT to transform the time-domain signals to 1024 fre-
quency bins, and the overlapping ratio of the STFT windows
is 0.75. We calculate the time-frequency local covariances

with . The length of the windows of TIFROM and
TIFCOR is set to 12, following the setting in the original papers.
Under STFT, we see that the results of applying the convex ge-
ometry-based algorithms on separating music signals are very
promising—both ProSPA and VolMin-AO yield considerably
lower MSEs than the benchmark algorithms. On the other hand,
we see that if we directly apply ProSPA and VolMin-AO in the
time domain, where local dominance may not hold, then the
MSE performance is not satisfactory.

C. Extension 2: Convolutively Mixed Speech Sources
We also test the performance of the proposed approaches

under the more realistic convolutive mixture model. For in-
stance, speech mixtures recorded in an indoor environment are
often convolutive, due to multipath reflections.
1) Convolutive Mixture Signal Model: The received signals

are modeled as a convolution of the source signals and an FIR
filter (a frequency-selective mixing system),

where is the mixing system's impulse response at the th
time lag, and is the impulse response length. Convolutive
mixtures can be decoupled into many instantaneous mixtures
by the frequency-domain approach [4], [32]. Specifically, by
applying STFT on consecutive time windows, we have

where and are defined by the same way
as in the last subsection, and is the frequency component
of the mixing filter at frequency . Thus, the BSS-QSS
algorithms can be applied on each frequency to recover
and , thereby recovering via the inverse short-time
Fourier transform. The challenge here is to tie together the dif-
ferent permutations of the source components at different fre-
quency bins; see [4], [32] for standard methods for dealing with
this issue.
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Fig. 12. The channel between positions (2,1,1.6) and (3,1,1.6) with the first
impulse normalized to one; ms.

2) Settings and Result: We test the algorithms under the soft-
ware platform provided in [4]. We follow every step of the im-
plementation of the frequency-domain approach therein except
that we replace the per-frequency instantaneous mixing system
estimation algorithms by our proposed algorithms. The speech
sources used in this subsection are randomly picked 10-second-
long real speech sources as in [4]. The convolutive mixtures are
obtained by a sensor array in a simulated room under different
reverberation time 's; such an environment is simulated by
the image method [48]. In general, larger means more se-
vere multi-path and a more challenging convolutive speech sep-
aration problem. A typical channel response from a source to a
receiver is shown in Fig. 12. The simulated room is of the size
5 m 5 m 2.3 m; the sources are located at (2, 1, 1.6), (2, 1.5,
1.6), (2, 2, 1.6), (2, 2.5, 1.6) and (2, 3, 1.6), and the sensors are
in positions (3, 1, 1.6), (3, 1.4, 1.6), (3, 1.8, 1.6), (3, 2.2, 1.6),
(3, 2.6, 1.6) and (3, 3, 1.6). The performance of the various al-
gorithms is measured by the output signal-to-interference-ratio
(SIR) [4], [32].
In Table VI, we show the SIRs of the algorithms under dif-

ferent 's. The convolutive mixture is decoupled into 1024
frequency bins by short-time Fourier transform (STFT) and the
proposed algorithms are applied on each frequency. We also
use PARAFAC-SD as adopted in [4] for benchmarking as it
demonstrates superior performance to other BSS algorithms in
the application of convolutively mixed speech separation. The
average input SIR at each sensor is dB and the output
average SIRs are obtained from 50 trials. Note that the pro-
posed algorithms work well in this simulation under all 's.
Specifically, VolMin-AO and ProSPA yield similar SIRs under
all 's under test. In particular, VolMin-AO is slightly better
than ProSPA in terms of SIRs, while the latter is around three
times faster than the former. PARAFAC-SD is also very compet-
itive, exhibiting the best SIR performance when ms.
However, when the environment gets more critical, i.e., when

increases, the proposed algorithms show better SIRs. As for
the execution times, ProSPA and VolMin-AO both exhibit more
favorable performances than PAFAFAC-SD in this simulation.

VII. CONCLUSION
In this paper, we proposed a framework of BSS-QSS by ex-

ploiting convex geometry in spatial-covariance domain. In the
case where the local dominance condition holds, we proposed to
employ SPA to estimate the mixing system in closed form. We
developed a simple pre-processing procedure to deal with the

TABLE VI
THE SIRS AND RUNTIMES OF APPLYING THE ALGORITHMS ON CONVOLUTIVE

MIXTURES UNDER VARIOUS 'S; ; SOURCE
SEC.; NUMBER OF

short-term source cross-correlation problem in the over-deter-
mined case, and provided theoretical analysis of its efficacy. We
also formulated the BSS-QSS problem as a VolMin problem,
and proved that identifiability of VolMin is guaranteed under a
condition that is more relaxed than local dominance. We fur-
ther proposed a fast VolMin algorithm that exploits the special
structure of BSS-QSS in the over-determined case. The pro-
posed algorithms were extensively tested on both instantaneous
and convolutive mixtures of real speech/music signals. Sim-
ulation results indicate that our framework is very promising
for BSS-QSS—the new algorithms feature comparable or better
performances than some state-of-the-art algorithms for both in-
stantaneous and convolutive mixtures. The simulation results
also underscore salient features, such as the speed of ProSPA
and VolMin-AO, and the high accuracy of VolMin-SISAL in
the under-determined case.

APPENDIX A
PROOF OF PROPOSITION 1

By the definition of and in (5) and (16), respectively,
it can be verified that there exists a permutation matrix

such that
(30)

By , it can be easily seen that

which leads to following (30) (note that
denotes the range space of ). Hence, to show that the

projection in (18) eliminates , it suffices to show that
.

Given can be expressed as

By the assumptions that , and that and
are mutually independent, we have

. Taking the above noted fact, and denoting
as an eigen-decomposition of , we

re-express as

(31)

Now, to show that , we prove two results,
namely, that (i) (31) is an eigen-decomposition of , and that
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(ii) the eigenvectors are aligned to , i.e., the first
principal eigenvectors of ,.
To prove the first result, observe that is uni-

tary. Hence, (31) takes an eigen-decomposition form if
is diagonal. In fact, we have

where, by the assumption that each is zero-mean circular
symmetric and uncorrelated with one other, one can verify that

with and
. In words,

is a diagonal matrix whose diagonal elements
contain for all . It also follows that (31) is
indeed an eigen-decomposition of .
To prove the second result, observe from (31) that are

aligned to the first principal eigenvalues of if

(32)

where is the smallest eignevalue
of . Note that

which is by the assumption that and are indepen-
dent of each other for . From the above two equations,
one can easily show that

The above equation suggests that if
, then (32) holds. It follows that are

aligned to the first principal eigenvalues of , and the proof
of Proposition 1 is complete.

APPENDIX B
PROOF OF THEOREM 1

Let be a feasible solution of Problem (20). Our proof
is divided into the following steps.
Step 1: By the model in (10) and the constraint in (20b), we can
write

(33)

Also, we have . The proof is as follows:
Since , we get

. As a basic matrix result,
holds only when .
Step 2: Since , (33) can be equivalently written
as

Ξ

where
Ξ

with denoting the pseudo-inverse of .
The matrix Ξ has the following properties:

i) Ξ is invertible.
ii) Ξ .
iii) Ξ .
iv) Ξ .

The proof of the above properties are as follows. Property (i)
follows from the fact that . To prove
Property (ii), first note that and . Sub-
sequently, we have

Ξ

Property (iii) is a direct consequence of Properties (i) and (ii). To
prove Property (iv), wemake use of the fact that Ξ (note
that the above fact requires (33), from which one can find that

, and consequently, Ξ .)
Let , which by definition takes the form
for some . Using Ξ can be expressed as
Ξ where (note that ). This implies that
also lies in Ξ .
Step 3: Consider the objective value of Problem (20). We show
that

(34)

and equality holds only if Ξ is column-orthogonal. To prove it,
we plug Ξ into the objective function

Ξ Ξ Ξ (35)

where the second equality is by for
square . Recall Condition (i) in , i.e.,

. The above condition
implies

Ξ (36)

which is by Property (iv). By applying Property (i) and Lemmas
1–2 to (36), we get

Ξ (37)

where is the dual cone of , which can be shown to be

see, e.g., [23]. We have the following chain

Ξ Ξ (38a)

Ξ (38b)

Ξ (38c)

Ξ
(38d)

Ξ
(38e)
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where (38b) is Hadamard's inequality; (38c) is by (37); (38d)
by the arithmetic-geometric mean inequality; and (38e) is by
Property (iii). It follows from (35) and (38) that

. Also, by Hadamard's inequality, equality in (38b)
holds only if Ξ is column-orthogonal. The latter is equiva-
lent to saying that Ξ is column-orthogonal.
Step 4:We ask ourselveswhen achieves the lower bound
in (34).We proved previously that equality in (38) holds only for
column-orthogonal Ξ. Under the restriction by Condition (ii) of

, and considering Property (iv), the only possible choices
of column-orthogonal Ξ are

Ξ

where is any permutation matrix and
is any diagonalmatrix with non-zero diagonals. By Property (ii),
we must have . Subsequently, we are left with Ξ , or
equivalently, . Such a solution is easily
shown to satisfy equality in (34), and hence, optimal to Problem
(20). We therefore conclude that any
is an optimal solution to Problem (20), and no other optimal
solutions exist.
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