
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005 3857

On Downlink Beamforming With Greedy
User Selection: Performance Analysis

and a Simple New Algorithm
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Abstract—This paper considers the problem of simultaneous
multiuser downlink beamforming. The idea is to employ a transmit
antenna array to create multiple “beams” directed toward the
individual users, and the aim is to increase throughput, measured
by sum capacity. In particular, we are interested in the practically
important case of more users than transmit antennas, which
requires user selection. Optimal solutions to this problem can
be prohibitively complex for online implementation at the base
station and entail so-called Dirty Paper (DP) precoding for known
interference. Suboptimal solutions capitalize on multiuser (selec-
tion) diversity to achieve a significant fraction of sum capacity at
lower complexity cost. We analyze the throughput performance
in Rayleigh fading of a suboptimal greedy DP-based scheme
proposed by Tu and Blum. We also propose another user-se-
lection method of the same computational complexity based on
simple zero-forcing beamforming. Our results indicate that the
proposed method attains a significant fraction of sum capacity
and throughput of Tu and Blum’s scheme and, thus, offers an
attractive alternative to DP-based schemes.

Index Terms—Beamforming, downlink, multiuser diversity.

I. INTRODUCTION

T RANSMIT antenna arrays can be utilized in two basic
ways or a combination thereof: space-time coding and spa-

tial multiplexing. The former can be used without Channel State
Information (CSI) at the transmitter and allows mitigation of
fading and exploitation of transmit-receive diversity. However,
if CSI is known at the transmitter, higher throughput can be at-
tained using spatial multiplexing, which can be implemented
as multibeam transmit beamforming. Until recently, transmit
beamforming was mostly considered for voice services in the
context of the cellular downlink. With the emergence of third-
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and fourth-generation (3G and 4G) systems, higher emphasis is
being placed on packet data, which are more delay-tolerant but
require much higher throughput. Hence, we have the recent in-
terest in transmit beamforming strategies for the cellular down-
link that aim to attain the sum capacity of the wireless channel
[1], [11], [13]–[16], [18], [19].

The scenario of interest can be modeled as a nondegraded
Gaussian broadcast channel (GBC). Let be the number of
antennas at the transmitter [Base Station (BS) in a cellular
context], and consider a cluster of mobile users, each
equipped with a single receive antenna. The channel between
each transmit and receive antenna is constant over a certain
time interval and is known at the BS. The received signal is
corrupted by Additive White Gaussian Noise (AWGN) that is
independent across users. The BS may transmit simultaneously,
using multiple transmit beams, to more than one user in the
cluster.

Since the receivers cannot cooperate, successful transmission
critically depends on the transmitter’s ability to simultaneously
send independent signals with as small interference between
them as possible. Caire and Shamai [1] proposed a multiplexing
technique based on coding for known interference, known as
“Writing on Dirty Paper,” Costa precoding [2], or dirty paper
(DP) coding. In [2], it is proven that in an AWGN channel with
additional additive Gaussian interference, which is known at the
transmitter in advance (noncausally), it is possible to achieve the
same capacity as if there were no interference. Assuming Costa
precoding and known channels at the transmitter, Vishwanath
et al. [14] and Yu and Cioffi [19] have proposed algorithms that
evaluate sum capacity of the GBC along with the associated op-
timal signal covariance matrix. However, both approaches re-
quire convex optimization in (order of) variables to find
the optimal signal covariance matrix. Jindal et al. [7] have re-
cently proposed a more efficient iterative algorithm, which re-
quires operations per iteration.

The complexity of the aforementioned optimal strategies
can be problematic for online implementation, especially when

is large. A reduced-complexity suboptimal solution to sum
rate maximization is proposed in [1]. It suggests the use of QR
decomposition of the channel matrix combined with DP coding
at the transmitter. The combined approach nulls interference
between data streams, and hence, it is named zero-forcing
dirty-paper (ZF-DP) precoding. If , ZF-DP is proven to
be asymptotically optimal at both low and high SNR but subop-
timal in general, whereas ZF beamforming without DP coding
is optimal in the low SNR regime and yields the same slope of
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throughput versus SNR in decibels as the sum capacity curve
at high SNR. For the case of , Spencer and Haardt
[11] considered ZF beamforming without DP coding, and
Samardzija and Mandayam [10] compared ZF beamforming
with QR-decomposition-based spatial prefiltering coupled with
DP coding.

If , [1] has shown that random selection of
users incurs significant throughput loss for both ZF-DP and
ZF schemes. Tu and Blum [13] have proposed an algorithm
based on ZF-DP, with a greedy user-selection procedure, named
greedy ZF-DP (gZF-DP). In [13], it is shown by simulations that
the throughput of gZF-DP is a significant fraction of the sum ca-
pacity. This is achieved by means of multiuser diversity. For the
case of , Viswanathan et al. [16] considered the problem
of achieving any point in the capacity region and not only max-
imum sum capacity. They proposed ZF beamforming coupled
with a user-selection scheme that schedules users using an
exhaustive search over a set of users with the highest indi-
vidual SINR . The throughput of this scheme
was compared to the throughput of a DP-coding-based optimal
algorithm, and it was reported that as approaches , the
throughput of ZF with exhaustive user selection comes close to
the throughput of the optimal algorithm when each receiver has
one antenna [16].

An important shortcoming of DP coding is that it requires
vector coding, and depending on the SNR, it may require long
temporal block lengths to be well approximated in practice. In
particular, the required block length decreases as SNR increases,
with a block length of one being adequate at sufficiently high
SNR. At low and moderate SNR, a good approximation of DP
can be computationally demanding with the current state-of-art
[8], [18], [20]. For this reason, we advocate herein a more prag-
matic approach, based on plain ZF beamforming.

Our goal is to investigate low-complexity downlink beam-
forming solutions that come close to attaining sum capacity for
the practically important case wherein the number of down-
link users is larger than the number of transmit antennas

, which entails user selection. Our aim is three-fold: i) An-
alyze gZF-DP to better understand the effects of multiuser di-
versity; ii) propose a simpler greedy alternative, based on ZF
beamforming and dubbed ZFS, which does not use DP coding;
and iii) assess the performance of both gZF-DP and ZFS rela-
tive to sum capacity. The key idea is that multiuser diversity can
largely make up for the use of simple linear processing in lieu of
more complex schemes. The performance analysis of gZF-DP
is useful in system design, and ZFS is appealing from a prac-
tical standpoint. In particular, we will show that the complexity
of the selection procedure of the proposed algorithm is the same
as that of gZF-DP. Our simulation results indicate that at mod-
erate and high SNR, ZFS has equal slope of throughput versus
SNR as the gZF-DP and the capacity curve. It achieves a sig-
nificant fraction of throughput of the gZF-DP algorithm and re-
mains close to sum capacity for all SNR for a small to moderate
number of transmit antennas.

We note that an inherent drawback of the maximum sum ca-
pacity criterion is the lack of fairness guarantees, at least in the
short run. While this could be compensated over a longer time-

line due to channel variations, it remains that certain users may
be completely shut off during a scheduling epoch. Whether this
is appropriate or not depends on the context; on this issue, see
also [1], [11], [13]–[16], [18], and [19].

The rest of the paper is organized as follows. The problem
of sum rate maximization is formulated in Section II. This is
followed by a review of the gZF-DP algorithm, a description
of the proposed ZFS algorithm, and a comparison of the com-
plexities of the two algorithms in Section III. In Section IV, the
throughput performance of the gZF-DP algorithm in indepen-
dent Rayleigh fading is analyzed. Simulation-based comparison
of the throughput performances of gZF-DP and ZFS is provided
in Section V. Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Let model the quasistatic, flat-fading channel between
transmit antenna and the receive antenna of user , and de-
note . Note that is a row
vector. Thus, the channel matrix is

(1)

where denotes conjugate-transpose. rank
with probability 1, due to the assumed statis-

tical independence and continuous distribution of the channel
vectors. Throughout the paper, we are interested in the case

so that we assume that . Collecting the
baseband-equivalent outputs, the received signal vector is

(2)

where is the transmitted signal vector, and is the noise
vector. The signal covariance matrix is . The
total transmit power is constrained to . The sum capacity of
such a vector Gaussian broadcast channel is [15]

(3)

where is the set of by non-negative diagonal matrices
with Trace .

Using only linear spatial processing at the transmitter, which
is a suboptimal strategy, we obtain the following model. Let

( denotes transpose) be
the beamforming weight vector for user . The beamforming
weight matrix is

(4)

Collecting the baseband-equivalent outputs, the received signal
vector is

(5)

where is the transmitted signal vector containing uncorrelated
unit-power entries, and

...
...

. . .
...

(6)

accounts for power loading (the columns of are thus normal-
ized to unit norm). Note that the elements of are physically
distributed across the mobile terminals. Multiuser decoding
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is therefore not feasible; hence, each user treats the signals in-
tended for other users as interference. Noise is assumed to be
circular complex Gaussian, zero-mean, and uncorrelated with
variance of each complex entry .

The desired signal power received by user is given by
. The Signal-to-Interference plus Noise Ratio

(SINR) of user is

SINR (7)

The linear beamforming problem can now be formulated as

SINR

subject to
(8)

where denotes Frobenius norm, and stands for a bound
on average transmitted power.

Attaining capacity requires Gaussian signaling and long
codes, yet the logarithmic SINR reward can be motivated from
other, more practical perspectives as well. It can be shown that
it measures the throughput of QAM-modulated systems over
both AWGN and Rayleigh fading channels. The intuition is that
SINR improvements eventually yield diminishing throughput
returns.

III. REDUCED-COMPLEXITY ALGORITHMS

A. Greedy Zero-Forcing Dirty-Paper Algorithm

In [1], Caire and Shamai have proposed a suboptimal solution
to (3) based on the QR-type decomposition [6] of the channel
matrix obtained by applying Gram–Schmidt orthogo-
nalization to the rows of . is a lower triangular matrix, and

has orthonormal rows. Setting , (5) yields a set of
interference channels

(9)
while no information is sent to users .
In order to eliminate the interference term

, the input signals , for
are obtained by successive application of DP

coding, where for each , the interference is noncausally
known. This particular choice of precoding matrix
nulls interference caused by users and DP coding nulls
interference caused by users so that the scheme forces
all interference to zero. Hence, it was dubbed ZF-DP coding.
The throughput of the ZF-DP scheme is given by [1]

(10)

where , , and is the solution
of the water-filling equation

(11)

Then, for

(12)

Note that when , one has to select up to out of
users whose data will be transmitted. In general, different

selections yield different values of in (10). Furthermore,
different ordering within the same set of users yields different
sum rate. The ZF-DP scheme does not attempt to optimize the
throughput with respect to either user selection or ordering. In
[13], Tu and Blum have proposed a greedy algorithm for the
selection of out of rows of the channel matrix and or-
dering of the selected rows in the Gram-Schmidt orthogonal-
ization, aiming to maximize the throughput. The algorithm is
called greedy ZF-DP and is presented here for convenience.

Let denote the set of indices of all
users, and let denote the set of

selected users .

1) Initialization:
Set .
Let . Find a user such that

.
Set .

2) While :
Increase by 1.
Project each remaining channel vector

onto the orthogonal complement of the sub-
space spanned by the channels of the se-
lected users. The projector matrix is

(13)
where is the identity matrix, and

denotes the row-reduced channel
matrix consisting of the channel vectors
of the users selected in the first
steps

(14)

Let . Due to idempotence of
, we have

(15)

Find a user such that

(16)

Set .
3) Beamforming: Let , where

is the QR-type decomposition of .
4) DP coding: Applied to the rows of .
Power Loading: Water-filling.

The rows of in the QR decomposition of
are obtained by applying Gram–Schmidt orthog-

onalization to the ordered rows of : . This
yields [1]

(17)
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From , we obtain . By
definition of (10), orthonormality of , and (17), we
have

From (15) and (16), it follows that

(18)

for . In other words, the gZF-DP algorithm maxi-
mizes , conditioned on the choice of .

B. ZF With User Selection

ZF beamforming inverts the channel matrix at the transmitter
so that orthogonal channels between transmitter and receivers
are created. It is then possible to encode users individually, as
opposed to the more complex long-block-vector coding gener-
ally needed to implement DP. Note that ZF at the transmitter
does not enhance noise at the receiver, but it incurs an excess
transmission power penalty relative to ZF-DP. If , and

, then the ZF beamforming matrix is

(19)

which is the Moore-Penrose pseudoinverse of the channel ma-
trix. However, if , it is not possible to use (19) because

is singular. In that case, one needs to select out of
users.

For , the problem (8) is reformulated as follows:
Given , select and a set of channels

, which produce the row-reduced channel ma-
trix

such that the sum rate is the highest achievable:

subject to (20)

The throughput of ZF algorithm is given by [1]

(21)

where

(22)

and is obtained by solving the water-filling equation in (20).
The power-loading then yields

(23)

The problem can be conceptually solved by exhaustive search:
For each value of , find all possible -tuples and select a
pair , which yields maximum . However, such
an algorithm has prohibitive complexity.

We propose a reduced-complexity suboptimal algorithm,
dubbed ZF with Selection (ZFS), as outlined next.

1) Initialization:
Set .
Find a user, , such that

Set and denote the achieved
rate .
2) While :

Increase by 1.
Find a user, , such that

Set , and denote the
achieved rate .

If break, and de-
crease by 1
3) Beamforming:
Power Loading: Water-filling.

C. Complexity and Implementation

We consider complexity of the user selection procedure only.
The complexity of DP coding, required by the gZF-DP algo-
rithm, depends on its implementation, in particular, the degree of
approximation and the associated spatio-temporal block length
(which is a function of SNR), cf. [4], [18].

Complexity of the user selection procedure of the gZF-DP
algorithm is . To see this, note that for each ,
the algorithm evaluates -norms . Evaluation of

involves a vector-matrix multiplication, where the vector
is and the matrix . The complexity of this step is

. Repeating this over users in steps, we obtain
.

We will show that the complexity of the user selection proce-
dure of the ZFS algorithm is also . Again, for each

, the ZFS algorithm evaluates rates
. The evaluation of is split into the eval-

uation of the ’s followed by evaluation of ;
cf. (21). An efficient way to evaluate the ’s
is by using the matrix inversion lemma to invert the matrix

. Note
that

where , and
. Noting that and writing

(24)

after some algebraic manipulation, we obtain

(25)

where . It can be verified that
each time is increased, and , are
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known before the search over starts. Hence, eval-
uation of from (24) and (25) has complexity
proportional to . Repeating this over users in each
of steps, we obtain the overall complexity of the user-se-
lection procedure of the ZFS algorithm to be .

It can be shown that the per-iteration complexity of the sum
power iterative water-filling algorithm proposed by Jindal et al.
[7] is . Therefore, the gZF-DP and ZFS algorithms
have significantly lower computational complexity than the sum
power iterative water-filling algorithm if .

In the following, we pay attention to the substeps in step 2)
of the ZFS algorithm. Given a set , we have [1]

(26)

where denotes the projector onto the orthogonal com-
plement of span . Note that

for every user . This is due to (26)
and . Therefore, if (20) and (23) yield

, then . We discard
such . We also discard if (20) and (23) yield for
some . This is done to keep complexity at bay for oth-
erwise, combinatorial search might effectively emerge. Hence,
user is a candidate for if , . From
the properties of water-filling, this holds if

(27)

where .
Then, we have

(28)

If (27) is not satisfied, we skip to the next .
We note that the break in Step 2 is necessary when ZFS is

used but redundant when ZF-DP is used; it is shown in [1] and
[13] that in the latter case, maximum sum rate can always be
achieved with active users if [1]. On the other hand,
when ZF alone is used, the optimum number of active users is

and decreases as decreases, so that for ,
the ZF scheme reduces to maximum ratio combining (MRC)

[1]. This also holds for the proposed ZFS algorithm,
which follows from the water-filling equation in (20) and the
fact that .

IV. PERFORMANCE ANALYSIS IN INDEPENDENT

RAYLEIGH FADING

In this section, we evaluate the throughput of the greedy
ZF-DP algorithm [13] in independent Rayleigh fading when
channels remain constant over the duration of a transmission of
a block of symbols. The channels of all users are assumed to
have i.i.d. entries, which are circularly symmetric, zero-mean,
complex Gaussian random variables (r.v.s) with unit variance

. In [1], the average throughput of the ZF-DP
and ZF schemes in independent Rayleigh fading under a
long-term power constraint for general and is evaluated.

As noted earlier, the simple ZF-DP and ZF algorithms in [1]
do not attempt to optimize throughput with respect to user se-
lection and ordering when . Instead, users are selected
and ordered randomly.

A. gZF-DP Sum Rate Under Long-Term Power Constraint

We model the greedy ZF-DP algorithm [13] under a long-
term power constraint. We are interested in evaluating

- (29)

where is the solution of the water-filling equation, stemming
from the long-term (LT) power constraint

(30)

Note that the optimum determined by (30) will be a deter-
ministic function of the statistics of the ’s and not a function
of the random variables themselves. By this and linearity of ex-
pectation, we can rewrite (29) as

-

Therefore

- (31)

where denotes the probability density function (pdf) of
. Similarly, (30) becomes

(32)

In order to evaluate , we need to evaluate the pdfs of ’s
based on the knowledge of channel statistics and selection pro-
cedure. Our derivation below draws in part from performance
analysis tools in [5], [17], which we tailor to fit the context of
gZF-DP. In particular, our analysis accounts for and exploits the
specific selection procedure employed in gZF-DP.

B. Probability Density Functions

It is instructive to consider the modeling of the pdf of first,
followed by modeling the pdf of , and then generalizing to
compute the pdf of for general . First, let us determine
the distribution of . Note that is a sum of
squared magnitudes of circularly symmetric, zero-mean, unit-
variance complex Gaussian random variables. Therefore, it has
Chi-squared distribution with degrees of freedom

, whose pdf is

(33)
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denotes the Gamma function, and for
a positive integer . According to the selection algorithm

(34)

From order statistics, e.g., [3, (2.1.1)], we obtain the pdf of
as

(35)

where is the cumulative distribution function (cdf) of
. We say that the distribution of is the parent distribu-

tion of the order statistics , where
is the th largest for .

Noting that , for all of the remaining users
, it follows that the posterior distribution of of the

remaining users (after selecting user ) depends on the real-
ization of . In the sequel, we will need to use the conditional
pdf of of the remaining users given a realization of . Ac-
cording to (34) and, e.g., [3, Th. 2.7], the parent distribution of
the order statistics of the remaining users is equal
to truncated on the right at the value of

if
otherwise.

(36)

After setting , the selection algorithm proceeds by pro-
jecting the channel vectors of all of the remaining users onto the
orthogonal complement of the subspace spanned by the channel
vector of user . From (15), we have , for

, where is given in (13). The distribution of
given , which is denoted , then becomes

the parent distribution of the order statistics , given for
. Therefore, we need a mapping from to

that models the projection step

(37)

Here, denotes the pdf of , given realiza-
tions of and . Note that . is statisti-
cally independent of , for , so that from the point of
view of the users in , appears to be a randomly selected
projector matrix. However, the first user has been selected after
considering the channels of all users, and thus, there might be
mild dependence between the channels of the remaining users
in and . For analytical tractability, we will ignore
this dependence. Our simulation results will fully corroborate
this approximation: The difference is not even noticeable in
simulations.

Assumption 1: We therefore assume that conveys no in-
formation about , i.e., has the Markovian
property

(38)

The pdf is obtained from the following.
Claim 1: Let and de-

note independent -dimensional random (row-) vectors with

Fig. 1. cdf F (xjy) when y : 1�N channel vector.

i.i.d., circularly symmetric, zero-mean, complex Gaussian en-
tries with unit variance and . Let

and , where
[cf. (13)] is an projector matrix with eigenvalues
equal to 1 and one eigenvalue equal to 0. Then, the cdf of ,
given , is given by

for

elsewhere.
(39)

Remark 1: The rigorous proof of this claim turned out to be
elusive, but it is very well supported by simulations. Fig. 1 de-
picts versus for 2, 3, and 4. Lines show
empirical cdfs obtained by Monte Carlo (MC) simulations, and
markers show samples of analytic curves given by (39). In MC
simulations, for each value of , there were 2 random
realizations of given , for realizations of . The empir-
ical is discrete. Its support is divided
into 200 intervals of length 1/200. The match in Fig. 1 is very
accurate.

From (39), we obtain

for ,
otherwise.

(40)

From (18), it follows that , conditioned on a realization of
, is the maximum of r.v.s with the parent distribution

given by the pdf from (37). Using order statistics,
we obtain [3]

(41)
Since for , it follows that .
Finally

(42)

for .
Armed with these insights, we can now generalize to the com-

putation of the pdf of for . The associated derivation
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is deferred to the Appendix. Using the results of Section IV-A,
the pdf of is obtained as a marginal distribution:

(43)

for .
The pdfs of for can be written in a more

compact form, facilitating analysis and numerical integration.
Proposition 1: Define

(44)

and

(45)

Then, we have (46), shown at the bottom of the page. The proof
is given in the Appendix. We will use the forms in the above
proposition in the Proof of Theorem 1, whose statement appears
in Section IV-C.

Fig. 2 depicts an example of pdfs of for and
. Full lines depict analytically obtained pdfs. Markers

show samples of the empirically obtained pdfs through Monte
Carlo (MC) simulations. There are MC samples. For every

, the support of the empirical pdf is truncated where the tail
becomes insignificant. Then, the empirical pdf is discretized by
dividing the truncated support into 100 equal intervals. These
results justify the approximation (Assumption 1) made in the
course of an analytical derivation for tractability considerations.

C. Throughput of gZF-DP at High SNR

Let - denote the average throughput of the gZF-DP
algorithm. Let denote the SNR, where the noise
variance of each user is assumed equal to 1. We have the fol-
lowing result.

Fig. 2. Family of pdfs of d for N = 4,M = 8.

Theorem 1: Let , and let be the power limit. Then,
under our working assumptions

-
bits
dB

(47)

The proof is given in the Appendix. The above theorem shows
that the throughput versus SNR slope of the gZF-DP algorithm
in the high SNR regime is proportional to the number of an-
tennas at the transmitter . Note that this is the theoretical
limit of the capacity versus SNR slope for a multiple-input mul-
tiple-output (MIMO) system with transmit and re-
ceive antennas [9].

V. COMPARISON OF GREEDY ZF-DP AND ZFS

The throughputs of the gZF-DP and ZFS algorithms are pre-
sented in Figs. 3 and 4. The -axis shows sum capacity and
sum rate in bits per channel use. The -axis shows total power

in decibels. The noise level of every user is 1. The sum ca-
pacity and sum rates are averaged over 100 channels. Channels
are complex-valued, drawn from an i.i.d. Rayleigh distribution
with unit-variance for each channel entry. The sum capacity is
obtained using the approach proposed in [14].

For the gZF-DP algorithm, analysis (obtained under a long-
term power constraint) yields throughput very close to that ob-
tained via simulations (under a short-term power constraint).
This can be explained as follows. Capitalizing on multiuser di-
versity, gZF-DP selects and orders channels (users) from a large
pool of statistically independent candidates. The result is that
the ensuing ’s are far more stable than they would have been

(46)
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Fig. 3. ZFS versus Greedy ZF-DP versus Sum capacity:M = 8 users, N =

2, and N = 4.

Fig. 4. ZFS versus Greedy ZF-DP versus Sum Capacity:M = 16 users,N =

2, and N = 4.

without user selection and ordering. This justifies the use of
a long-term power constraint for analysis, as opposed to the
short-term power constraint originally proposed in the algorithm
and used in simulations.

In these scenarios ( or 4 and or 16), both
gZF-DP and ZFS algorithms achieve throughput close to sum
capacity. Note that ZFS exhibits the same slope of rate increase
per decibel of SNR as the gZF-DP algorithm and the sum ca-
pacity curve at moderate and high SNR.

Fig. 5 shows the throughput of the ZFS algorithm as a frac-
tion of the throughput of the gZF-DP algorithm for various pairs

, at 20 dB SNR. The curves are obtained by simulations,
averaging over 2 channels for each pair , . For all ,

considered, this fraction stays between 0.875 and 0.985. For
a given , the gap between gZF-DP and ZFS increases as
increases, but even for , the gap is uniformly less than

Fig. 5. R =R - for various numbers of antennas,N , and users,M ,
at 20 dB SNR.

13% of the gZF-DP throughput. Note that a realistic implemen-
tation of DP coding will incur a certain rate loss for the gZF-DP
algorithm, so that the gap would be smaller in reality.

Given and for sufficiently large , Fig. 5 shows that the
gap between ZFS and gZF-DP decreases with . This is due to
multiuser diversity—the more users that contend for transmis-
sion, the higher the probability that of them will be almost
orthogonal. This in turn reduces the advantage of DP-coding-
based schemes over ZFS. Depending on , the fraction of sum
rate of ZFS over the sum rate of gZF-DP may first exhibit a
dip before starting to increase steadily with . While the dip is
small (less than 3%), it is noticeable, and we do not have an ex-
planation for it. We have observed that, as SNR increases, more
transmit antennas are required for this dip to occur.

VI. CONCLUSIONS

We have considered two algorithms that capitalize on mul-
tiuser diversity to achieve a significant fraction of the multi-
antenna downlink sum capacity when the number of users
is greater than the number of antennas . We have analyzed
the throughput performance of the greedy ZF-DP algorithm in
independent Rayleigh fading and characterized the pdfs of cer-
tain key parameters of interest. Determining the proper number
of samples required for accurate Monte Carlo estimates is a dif-
ficult issue without a baseline. While the end result of gZF-DP
performance analysis requires sequential numerical integration
and is admittedly cumbersome, it provides such a baseline and
thus corroborates the results of Monte Carlo estimation. In addi-
tion, numerical integration is simpler than Monte Carlo simula-
tion for a small number of transmit antennas. Furthermore, our
analysis allowed us to establish that at high SNR, the throughput
versus SNR slope of the gZF-DP algorithm is proportional to .

We have also proposed another low-complexity algorithm,
dubbed ZFS, which does not require DP coding at the trans-
mitter. We have shown that the selection procedures of gZF-DP
and ZFS algorithms have the same complexity order ,
which is significantly smaller than the complexity of the optimal
algorithms when . We have evaluated the throughput
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performance of the ZFS algorithm via simulations. The results
show that for a realistic number of transmit antennas, ZFS
achieves a significant fraction of the throughput of gZF-DP
and sum capacity at a low coding and online computation cost.
The simulation results also indicate that at high SNR, ZFS
achieves the same slope of throughput per decibel of SNR as
the capacity-achieving strategy based on the use of DP coding
for known interference cancellation and convex optimization.

Due to its simplicity, low complexity, and close to optimal
performance, the proposed ZFS method offers an attractive al-
ternative to earlier DP-based methods when .

APPENDIX A
DERIVATION OF THE PDF OF

Note that there are three basic steps in deriving :

1) Truncation of the parent pdf after selecting user :
Find the conditional pdf of of the remaining users

given realizations of .
From order statistics [3], we obtain (48), shown at the
bottom of the page.

2) Mapping of into
: Given realizations of

for , where , there are
quadratic-form equations

Let the eigenvalue decomposition of be

From (13), it follows that there are eigenvalues
equal to 1 and eigenvalues equal to zero. Then, we
can write

As per Assumption 1, we neglect the (mild) depen-
dence of the projector matrices on the ’s for

. This yields

(49)
Since the projection is a vector in an

-dimensional subspace, it follows from Claim 1 that

for
otherwise.

(50)

Then, the pdf of the parent distribution of of the
remaining users given is

(51)

where .
3) conditioned on is the maximum of

r.v.s with pdf given in (51). Using order statistics
[3], we obtain

(52)

APPENDIX B
PROOFS

Proof of Proposition 1: Let us first prove the following:

(53)

where is given in (45).
This is proven by induction. For , we have

From (33), (36), and (40), we obtain

From (45), it follows that

Induction hypothesis: (53).
Induction Step:

otherwise.
(48)
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From (48) and (50), we obtain

By the induction hypothesis, we have

From (45), it follows that

Applying (45) again, we have

Now, we use the above result to prove Proposition 1. For
, from (44), we obtain

For and substituting (52) into (43), we obtain the
equation shown at the bottom of the page. Applying (53), we

obtain the equation at the top of the next page. Dividing the left
fraction and rearranging the right one, we obtain

Therefore

Proof of Theorem:

- where

so that from (32), we have

Using the Leibnitz rule, from (31), we have

It follows that

-

In order to determine - , we will de-
termine . Note that is equivalent to

. In addition, for
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where

so that is equivalent to . We will prove
that . From (32), we have

Then

where

Note that if we demonstrate that

the desired result will follow because

It is easy to check that
so that it suffices to prove that or, equiv-
alently, , for , where ,
and .

From (33) and (44), it follows that . Then, from
(35), it follows that .

In order to prove that for , we will
prove that is bounded for any

. In order to prove that is bounded,
consider the multiple integral [cf. (45)]

Integrating over , we obtain

Observe that the first multiple integral on the right-hand side
(RHS), which is denoted , has the same form as . Due to

, we have

Therefore



3868 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

Note that is bounded for all so that
is also bounded. Integrating over

all dummy variables, we obtain

where

It can be shown that is bounded
by the same argument as for .
Therefore, is bounded for all

.
Then, from (45), it follows that

.

If , then from (43), it follows that . If ,
then applying the mean-value theorem, we obtain

Since is bounded

Finally, from (43) and , it follows that
.
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