
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 8, AUGUST 2003 2019

Wireless Networks With Retransmission Diversity
Access Mechanisms: Stable Throughput

and Delay Properties
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Abstract—Building on the concept of retransmission diversity,
a class of collision resolution protocols [(B)NDMA] has been intro-
duced recently for wireless packet multiple access. These protocols
provide the means for improved performance compared with
random access and splitting-based collision resolution protocols
at a moderate receiver complexity cost. However, stability of these
protocols has not been established, and the available steady-state
analysis is restricted to symmetric (common-rate) systems. In
this paper, the stability region of (B)NDMA is formally analyzed.
The tools used in the analysis range from a preliminarydominant
systemapproach to the Foster–Lyapunov recurrence criterion and
the ( ) deterministic fluid arrivals approach. It is rigorously
established that maximum stable throughput is close to 1. This
is followed by a simpler and more general steady-state analysis,
bypassing the earlier generating function approach, using instead
only balance equations. This approach allows dealing with asym-
metry (multirate systems), yielding expressions for throughput
and delay per queue. Finally, we generalize BNDMA and the
associated analysis to multicode systems.

Index Terms—Random access, signal processing aspects of net-
work protocols: stability.

I. INTRODUCTION

I NCREASED interest in wireless data and multimedia
services motivates research in improved random access

protocols. These protocols are suitable for multiplexing bursty
sources encountered in data transfer [5], [10]. At light traffic
conditions, they provide average delay that is significantly
smaller than that of fixed allocation schemes like time, fre-
quency, or code-division multiple access (CDMA). However,
they have relatively low maximum throughput and suffer from
excessive delay under even moderate traffic.

The throughput/delay penalty of random access protocols is
due to collisions of data packets. When a collision occurs, the
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received packets are discarded without recovering any data.
New transmissions of the same packets must follow, possibly
inducing secondary collisions, so that more slots are used than
transmitted packets. Therefore, throughput decreases and delay
can become excessive.

In wireline networks, it is possible to overcome this short-
coming of random access techniques through the use of carrier
sensing and collision detection, as in wireline Ethernet local
area networks. In carrier sense multiple access with collision
detection (CSMA/CD), terminals sense the common bus for a
carrier before transmitting and then listen for collisions during
transmission. If a collision is detected, the transmission is
immediately aborted. If propagation delay is small relative to
packet duration, CSMA/CD alleviates the impact of collisions.
This differentiates CSMA/CD from ALOHA-type access,
which assumes that feedback is made available after packet
transmission is complete. An alternative way of achieving
higher throughput is by means ofcollision multiplicity feed-
back, wherein the number of collided packets is made available
to the transmitting terminals at the end of the packet trans-
mission. This can be exploited to optimize the retransmission
probability, but delay performance remains poor at higher loads
because collisions are still wasteful.

In wireless networks, it is possible to improve performance in
two ways. One is to employ a certain fixed amount of spreading,
which enables multipacket reception, but this comes at the price
of bandwidth expansion. Another stems from the fact that col-
lided packets are often received with disparate powers; if one
of them has much higher power than the rest, then it can be
correctly decoded. This is the so-calledcaptureeffect. Note,
however, that one may not rely on capture alone because it is
a random event.

A novel approach to the collision resolution (CR) problem
has been proposed recently in [15]. The idea behind it is to
generate diversity via immediate simultaneous retransmissions
of all collided packets induced by the medium access control
(MAC) layer protocol. The key fact is that ifthe same packets
collide again for a total of times, then one collects linear
mixtures of the original packets. If these mixtures are linearly
independent, then it is possible to recover the original packets by
solving the associated linear system. This requires that packets
contain certain known prefixes that enable detection and esti-
mation of the mixing matrix.

The protocol in [15] was dubbednetwork-assisted diversity
multiple access(NDMA). NDMA can achieve maximum
throughput close to 1, while exhibiting low delay over a wide
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range of loads. Maximum throughput is not 1, due to the use
of orthogonal terminal ID sequences embedded in the packet
header. The details will be clarified shortly, but we remark
that it is also possible to solve the set of linear equations
blindly, provided one more retransmission is requested, and
a certain type of packet phase modulation is employed at
the transmitters [17]. The protocol in [17] was dubbed blind
NDMA (BNDMA). BNDMA retains throughput and delay
characteristics similar to NDMA.

In the context of the random access schemes reviewed above,
(B)NDMA can be viewed as an alternative means of boosting
throughput close to one: Instead of requiring fast or elaborate
feedback, bandwidth overexpansion or relying on the random
capture effect, it works by exploiting the receiver complexity di-
mension. It improves throughput by paying the price of a moder-
ately complex receiver [roughly, for a -fold collision].
Additional benefits include a low delay characteristic and appli-
cability in a wireless environment, wherein CSMA/CD is not an
option due to shadowing.

A. NDMA and BNDMA Protocols

Consider a discrete-time, slotted system with one base station
(BS) and users, synchronized to slot timing. Each user stores
incoming packets in an infinite-capacity buffer. The average rate
of the th buffer arrival process is , and arrivals are indepen-
dent across users. At the beginning of each slot, a user transmits
one packet, provided that it is allowed to transmit and its buffer
is nonempty.

Listen-while-you-talk is not feasible in the wireless environ-
ment. Therefore, the BS detects collisions and provides feed-
back to the users. It is important to spell out feedback assump-
tions. As is customary in slotted random access (e.g., slotted
ALOHA or tree splitting), we assume 0/1/e feedback that is
made available to the users at the beginning of each slot. The
timing constraint can be met by time-division duplex (TDD) or
time-division multiplexing two protocols. In the noiseless case,
e feedback is in fact not necessary for (B)NDMA; we assume
a noiseless system1 to focus on network effects. In our context,
0 clears all terminals for transmission, whereas 1 enables those
that transmitted in the previous slot and disables all others. Note
that each terminal knows whether it has transmitted or not in the
previous slot.

In NDMA, transmission of a packet by theth user is detected
at the BS by using a filter matched to the user’s orthogonal ID,
which is embedded in the packet header. Therefore, collision
multiplicity is estimated as the total number of detected users
[15]. In BNDMA, collision multiplicity is estimated at the BS
using rank detection [17].

Once the BS detects a collision, it sets feedback to 1. All users
who transmitted in the previous slot will retransmit the same
packet, whereas all others will wait. Based on the collision mul-
tiplicity estimation, the BS decides how many retransmissions
of the collided packets are necessary for CR. The slots used for
the first transmission and subsequent retransmissions comprise
a CRepoch.

1In practice, this can be approximated using suitable forward error control
coding.

After transmissions (initial collision and retransmis-
sions), the discrete-time baseband-equivalent data model is

(1)

denotes packet length, is the number of collided packets,
is the received data matrix, is the mixing matrix, is the

signal matrix whose rows are collided packets, andis the
white Gaussian noise matrix. For NDMA, it is assumed that the
channel between every user and the BS is frequency-flat and
block-fading: constant over each slot but different from slot to
slot [15]. For BNDMA, the channel is assumed constant over
each CR epoch. Frequency selectivity can be easily accommo-
dated in both protocols with the inclusion of some slot guard
time; no other modifications are needed.

In NDMA, the mixing matrix is estimated using the known
user IDs, and then, is recovered. In BNDMA, the mixing
matrix has Vandermonde structure. This is obtained by the fol-
lowing retransmission scheme.

• Before the first retransmission, each user randomly draws a
digital carrier for the packet (for the th user).

• In the th retransmission, theth user’s carrier is multiplied
by , and the whole packet is multiplied by .
Random selection of digital carriers ensures that the Vander-

monde mixing matrix has full rank with probability 1. This al-
lows use of an ESPRIT-like method for blind packet recovery
[17].

For a -fold collision, NDMA requires retransmis-
sions [15], whereas BNDMA requires retransmissions [17].
Note that NDMA and BNDMAdeterministicallyachieve lower
CR delay than any tree-splitting/first-come first-serve (FCFS)
protocol for slotted ALOHA [5], including the dynamic tree al-
gorithm [6], which requires online rate estimation and adapta-
tion.

We are interested in establishing stability of NDMA and
BNDMA for a finite user population and buffered packets. Sta-
bility analysis is complicated because the queues are coupled,
yielding a nonseparable multidimensional Markov chain. This
difficulty also arises in the stability analysis of buffered slotted
ALOHA [2], [12]–[14], [16], wherein a single necessary and
sufficient stability condition is missing for . However,
initial progress can be made by employing thedominant
systemapproach, which was originally developed for slotted
ALOHA [12]–[14], [16]. This is pursued in Section II. Then,
in Sections III and IV, tight sufficient conditions for stability of
NDMA and BNDMA, respectively, are established.

After establishing stability, in Section V we turn to steady-
state analysis. This lays the foundation for estimating average
delay, on a per-queue basis, in terms of average arrival rates of
all users.

With the insight gained from stability and steady-state an-
alyzes of BNDMA, a generalized BNDMA scheme with im-
proved performance is proposed and analyzed in Section VI.
Section VII presents a unified delay analysis of the xNDMA
protocols. All analytic results are compared with simulations,
which are described in Section VIII.
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II. PRELIMINARY STABILITY ANALYSIS VIA DOMINANT

SYSTEM APPROACH

Let be the vector of queue
lengths. Assuming Poisson arrivals, and given that the CR
epoch is deterministically bounded (by, for NDMA
and BNDMA, respectively), it suffices to study the embedded
Markov chain with transition times set at the beginnings of
epochs. Let denote the vector of
queue lengths at the beginning of theth epoch. To see that this
is indeed a Markov chain, note that [15], [17]

(2)

for , where is the number of new arrivals
into queue during the th epoch. is a random variable,
with mean

NDMA

BNDMA

Here, is the Kronecker delta function, and is the indi-
cator function. We adopt the following definition of stability:

Definition 1 (e.g., [12]): Queue of the system isstableif

and (3)

(4)

the queue issubstable. A stable queue is also substable. If a
queue is not substable, it is unstable. The system is stable if all
the queues are stable. If at least one queue is unstable, the system
is unstable.

In (3), stands for the greatest lower bound.
Proposition 1: The vector process is a homogeneous,

irreducible, and aperiodic Markov chain with countable number
of states.

The proof is straightforward (see [9]).
The definition of stability in (3) is equivalent to positive recur-

rence of the associated embedded Markov chain. In other words,
the system is stable if and only if there is a positive probability
mass function of when tends to infinity. Substability as
defined in (4) is equivalent to positive recurrence of the em-
bedded Markov chain at the boundary of stability—when the av-
erage arrival rate is equal to the average service rate. Then, dif-
ferent initial conditions may yield different positive prob-
ability mass functions of when tends to infinity. Hence,
it is the worst case that decides whether the queue is substable
or unstable. One can find more detailed explanations in [11].

A. Preliminary Conditions for Stability

Consider a dominant system in which every one of the
queues always transmits one packet at the beginning of a CR
epoch, even if it has none in its queue, in which case, it trans-
mits a dummy packet. Since this action increases the CR (and

hence service) time for all queues without affecting arrivals,
a queue in the dominant system always has at least as many
buffered packets as it would have in the original system,on a
realization-by-realization basis, provided both begin from the
same initial state. It is said that the queues in the dominant
system dominate the queues in the original system. Similar to
the slotted ALOHA case [12], by virtue of Proposition 1, the
original system is stable if and only if

, . Note that this is equivalent to existence of a positive
probability mass function, and therefore, it is also equivalent to
definition of stability (3). Let the superscript ( ) denote the
original (dominant) system. If the dominant system is stable,
then , . Since

it follows that the original system is also stable.
Assume that the arrival process is Poisson, and consider any

particular queue in the dominant system. This queue is equiv-
alent to a slotted M/D/1 queue with service timeslots, for
NDMA, or slots, for BNDMA. Note that the queues in the
dominant system are decoupled. Loynes theorem states that if
the arrival process and service process of a queue are stationary,
and the average arrival rate is less than the average service rate,
then the queue is stable; if the average arrival rate is greater than
the average service rate, the queue is unstable; if they are equal,
the queue can be either stable or substable [11]. Stationarity of
arrivals is given, whereas service is deterministic in the domi-
nant system, hence trivially stationary (note that this is not ob-
vious in the original system). Therefore, a sufficient condition
for stability is

NDMA

for

BNDMA

(5)

III. STABILITY OF NDMA VIA FOSTER–LYAPUNOV APPROACH

A relaxed condition on the arrival rates that guarantees sta-
bility of an NDMA system can be obtained by using the Foster-
Lyapunov approach [3].

Note that for the transmission of collided packets, slots
are needed. After these packets are transmitted, another con-
tention resolution period can start. Therefore, the system should
be stable if on average less than one new packet arrives in the
system during one slot. This intuition is confirmed in the fol-
lowing Theorem.

Theorem 1: The NDMA system with Poisson arrivals is
stable if2

(6)

Proof: It has been shown that is an irreducible
Markov chain. We will show that is ergodic under the
above condition, by using Foster’s criterion for ergodicity of a
Markov chain (e.g., [3], reproduced here for convenience):

2If � > 1, then the system is clearly unstable.
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Suppose that the chain is irreducible, and let be a finite
subset of the state space. Then, the chain is positive recurrent
if for some : and some , we have

and

where is the probability of transition from stateto state .
If a chain is irreducible and aperiodic positive recurrent, then

it is ergodic (e.g., [3]), which implies (3).
Note that . In

addition,
. The right-hand side of the last equation resembles

the notion ofdrift of a one-dimensional discrete Markov chain.
Then, roughly speaking, one may think of Foster’s criterion as
a generalization of drift analysis: If for all large enough states
(states out of a finite subset ) drift is negative (c.f. the last
condition), then the size of queues decrease so that the chain is
stable.

Consider the function , which is defined on
the state space of the Markov chain, where denotes
the non-negative integers. For all , we have

(7)

and

(8)

because the third term is always finite due to Poisson arrivals
and bounded epoch length. Here, is the indicator

function.
Consider the last condition. We have

(9)

where is the th epoch length in slots, and it is equal to the
number of transmitted packets . Hence

Let . Then, , we have that .
Therefore, , if (6) holds, then there exists, where

, such that

(10)

It follows that all conditions of the Foster’s criterion (7), (8), and
(10) are satisfied. Therefore, we conclude that is ergodic.
Hence, (6) is sufficient for stability.3

IV. STABILITY OF BNDMA VIA

DETERMINISTIC FLUID APPROACH

In order to strengthen the BNDMA stability result obtained
via the dominant system approach, we first attempted to show
that BNDMA satisfies the conditions of the monotone separable
framework of Baccelli and Foss [4] (see also [1]). In [4], the au-
thors provide a rigorous framework for application of the “sat-
uration rule.” While we were successful in demonstrating that
BNDMA conforms to this framework, calculating a key con-
stant in [4, Th. 1] turned out to be a formidable task,
due to the dependence of the queues. For this reason, we adopt
an alternate route, first suggested by Cruz [7], in which packet
arrivals are assumed to satisfy certain deterministic constraints
along each sample path. This approach conforms to a leaky
bucket rate control mechanism, and the ensuing analysis cap-
tures the essence of the protocol without distractions due to in-
tricate asymptotic probabilistic behavior.

Specifically, at this point, we depart from the Poisson arrivals
assumption and revert to the following alternative:4 The number
of packet arrivals to theth queue over the time interval ,
denoted by , satisfies

(11)

Note that it is customary to use instead of for the slope
in this context [7]; however, since this slope serves as an upper
bound on the long-term average rate, we prefer to usefor
simplicity and uniformity with the rest of the paper.

is a measure of burstiness [7]. Since we are dealing with a
slotted system, time is measured in slots, and the variables
are integer. The initial state of theth queue, which is denoted
by , is assumed to be a finite non-negative integer but is
otherwise arbitrary.

In our present deterministic fluid context, stability means
that every queue in the system remains bounded. Thus, we aim
to show that under a suitable condition on thes, the state

3It can be shown that Theorem 1 holds under more general conditions, i.e.,
stationary ergodic arrivals. The idea is that the sum of the queue lengths in the
NDMA system can be shown to be bounded above byJ plus the length of a
single server queue with sum input. From Loynes’ Theorem (e.g., [11]), the
single server queue is stable under (6). This argument is more general, but the
Foster–Lyapunov approach sheds more light into the system dynamics because
it is tied to the familiar concept of drift.

4This is done only for the purposes of a tractable stability analysis; throughout
the rest of the paper, the usual Poisson arrivals assumption is in effect.
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(backlog) of every queue in the system will remain bounded for
all time, irrespective of initial conditions. As it turns out, it is
easier to prove that every queue in the system will empty out in
finite time infinitely often, irrespective of initial conditions and
the state of other queues in the system. This, in turn, implies
that every queue remains bounded.

We have the following result.
Theorem 2: The B-NDMA system is stable if

(12)

Proof: The proof is by induction, and the proof of each
step is by contradiction. Without loss of generality, we assume
that

(13)

In addition, if for , then we may
increase the burstiness allowanceto such that

. This assures that

(14)

for all and .
• Show that queue 1 remains bounded for

all time.
Consider the first queue, and assume that itnever emp-

ties. Then, it remains continuously backlogged, and since
the BNDMA “server” is work-conserving, the first queue
transmits at all times. Over the time interval , queue 1
accumulates at most packets,
where denotes the largest integer not greater than. If
it transmits continuously, then it can be active over at most5

contiguous
slots, where is the longest possible CR epoch length.
From (12) and (13), it follows that . Noting
that , we write ,

. This yields that queue 1 can be active in at most
slots. Noting that the

transmission time of packets is quantized in epochs of length
slots, if , where

denotes the smallest integer greater than or equal to,
then . Since for finite , it contradicts the
assumption that queue 1 never empties.

It follows that queue 1 will empty in finite time, irrespective
of initial conditions and the state of other queues in the system.
We may now repeat this exact argument to claim that queue 1
will empty out infinitely often as time tends to infinity, irre-
spective of initial conditions and the state of other queues in the
system. Thus, queue 1 remains bounded for all time.

• Induction hypothesis: Queues 1 to remain
bounded for all time.

• Induction step: Show that, under the induction hy-
pothesis, queuealso remains bounded for all time.

Let us again begin by showing that queuewill empty out
once in finite time. Let denote
the maximum number of packets transmitted by theth queue
over time , where . Assume that theth queue

5Recall that no packet is lost in transmission.

never empties. It therefore transmits continuously in every slot.
Under this scenario and using (14), the longest possible activity
burst of the th queue is obtained for the following distribution
of epochs.

• epochs of length when all queues
transmit.

• epochs of length when all queues
except the first queue transmit (the first queue is idle be-
cause it is empty).

• epochs of length when all queues
except the first and second queue transmit, and so on, until
only the th and higher ordered queues remain transmit-
ting.

• epochs of length .
This yields the following upper bound on the length of time

over which queue can remain continuously active

By substituting the s, we obtain

(15)

From (12) and (13), it follows that

which yields

Therefore, (15) becomes

It follows that if

where is chosen to consist of an integer number of epochs of
lengths , according to s for ,
then , which contradicts the assumption that queue
never empties. Hence, queuewill empty once in finite time.
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So far, we have not used the induction hypothesis; it comes
into play at this point. In order to repeat the above argument to
show that queue will empty in infinite time infinitely often,
we need to have that the backlog of all lower ordered queues is
bounded at the beginning of subsequent queue-evacuation in-
tervals (c.f. the last inequality). This is assured by the induction
hypothesis, and thus, the proof is complete.

V. STEADY-STATE ANALYSIS

Assuming stability, let ,
( ) be the probability that queue is empty
at the beginning of an epoch in the steady state. It is shown
in [15] and [17] that by knowing (in a symmetric system,

), one can find an approximate distribution of CR
epoch lengths. Then, by finding the first and second moments
of CR epoch lengths, one can approximate delay. Therefore, the
steady-state analysis provided relations betweenand the av-
erage arrival rate so that delay could be expressed in terms
of .

Analogously, our goal is to find a relation between and
the vector of average arrival rates . This will serve
us in finding delay for each user, as elaborated upon in Sec-
tion VII.

We now revert to Poisson arrivals in order to focus on steady-
state behavior. Note that in the steady-state, a queue must have
the same average number of incoming and outgoing packets
during the average epoch length, which is denoted.6 Note
that is the average number of transmitted packets by
queue during . Therefore, the balance equations are

for (16)

and, therefore, also

(17)

Let , which is the average total number of
transmitted packets during . Since each active user transmits
exactly one packet, is also the average number of active users
during . From the protocols [15] and [17], it follows that in
the th epoch

NDMA
if 0 users transmit

# active users otherwise
BNDMA # active users (18)

Note that for BNDMA:

which implies by linearity of expectation

6This is a slight abuse of notation, whereE[l] stands forE[l(k)]. This con-
vention is used throughout the rest of the paper.

whereas for NDMA

which again implies by linearity of expectation

We have already noted that the queues are coupled so that
Markov chain is nonseparable multidimensional. Therefore, it
is difficult to find the exact expression for . To
make the analysis tractable, we will assume that the queues are
independent, so that . This is jus-
tifiable for low traffic loads when there is small probability of
contention among users and epochs are short. However, at high
loads, this assumption can lead to inaccurate estimates of.
Hence, we will use simulations to verify our analysis.

By using the independence assumption, we have thatfor
satisfy

NDMA

BNDMA

(19)

Remark 1: Note that the independence assumption is only in-
voked to derive (19) [NDMA]; for BNDMA, the independence
assumption is not necessary, and hence, (19) [BNDMA] isexact.

The uniqueness of solution of the above systems of equations
is established in the following proposition.

Proposition 2: has a unique solution in (0, 1), , if

NDMA

BNDMA

The proof is given in the Appendix, which also shows that (19)
[NDMA] boils down to polynomial rooting in (0, 1).

This generalizes the steady-state analysis in [15] and [17] to
the asymmetric (multirate) case in a much simpler way. The
formulas in (19) allow direct calculation of and , from
which throughput can be calculated. In addition, given the above
formula for , delay can be accurately approximated (see
Section VII).

Note that the conditions of Proposition 2 arenecessaryfor
stability in the usual Markovian sense. For NDMA, it is obvious
that the system is unstable if . For BNDMA, if
the condition of Proposition 2 is not satisfied, then, at least for
the queue with the highest arrival rate (19), [BNDMA] does not
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yield a positive solution for . This contradicts stability in the
Markovian sense and shows that, at least for Poisson arrivals,
the total load that is less than packets per slot may
not be sufficient for stability, even though a-fold collision is
resolved in slots in BNDMA.

VI. GENERALIZED BNDMA

At a given total offered traffic load , in a BNDMA
system, a queue with higher arrival rate would have smaller
stability margin (lower ) than a queue with lower arrival
rate (c.f. (19) [BNDMA]). Such a high-rate queue will have
more backlogged packets, higher queuing delay, and therefore
higher total average delay, than a low-rate queue (analysis fol-
lows in Section VII). To improve the stability margin and de-
crease delay, we have proposed that theth queue in BNDMA
be allowed to transmit up to packets simultaneously
at the beginning of a CR epoch, provided it is nonempty [8].
Note that this allowslimited contention between packets from
the same queue.

To preserve the CR method used in BNDMA (in particular, to
ensure that the mixing matrix is Vandermonde and has
full rank w.p. 1), independent phase modulation is employed for
different packets of the same queue that are transmitted during
the same epoch (in addition to independent phase modulation
across users).

The embedded Markov chain state-transition equation [with
the same notation as in (2)] becomes

for (20)

Note that given a state, the number of packets transmitted during
the following epoch, and, consequently, the epoch length, are
deterministic. Therefore, , which is given in (20), is a ho-
mogeneous, irreducible, aperiodic Markov chain with a count-
able state-space (analogously to Proposition 1).

A. Stability of Generalized BNDMA

Note that a generalized BNDMA (G-BNDMA) system as de-
scribed above can be viewed as splitting theth user’s queue in

subqueues, where metering is used for the assignment of
incoming packets to each subqueue. Moreover, each subqueue
transmits exactly one packet when it is nonempty and allowed
to transmit. Under the same fluid traffic model as in the proof
of the stability Theorem 2, metering induces “decimated” con-
straints on the subqueues, i.e., subqueueof queue receives
at most packets over a time interval of
length . Then, Theorem 2 immediately yields the following
stability result for G-BNDMA:

Corollary 1: The G-BNDMA system is stable if

(21)

B. Steady-State Analysis of G-BNDMA

We again revert to Poisson arrivals to the queues in order
to discuss the steady-state behavior of G-BNDMA. Due to

metering, arrivals tosubqueuesare not independent Poisson,
which significantly complicates the analysis. Therefore, we
approximate metering with random packet assignment, which
preserves Poisson distribution and independence of arrivals to
subqueues. Since each subqueue can transmit no more than one
packet during an epoch, a G-BNDMA system withqueues
with arrival rates ( ) is approximated by a
BNDMA system with terminals with arrival rates

for all subqueues of theth queue of the original
G-BNDMA system.

Let denote the probability that a subqueue of theth
queue of the system with random packet assignment is empty in
the steady state. The balance equation (16) becomes

for (22)

so that . By fol-
lowing the same steps as in Section V, we obtain

(23)

Clearly, by increasing , the stability margin is improved.

VII. D ELAY

Delay in a symmetric ( ) NDMA or
BNDMA system can be closely approximated [15], [17] by
modeling each queue as an M/G/1 queue with server vacation.
This M/G/1 queue’s service time is equal to the average
length of an epoch in which a particular queue transmits a
packet—relevant epoch— , and vacation time is equal to
the average length of an epoch in which a particular queue is
idle—irrelevant epoch— . We reproduce the delay formula
for convenience

The first and second moments of relevant and irrelevant epoch
length are functions of [15], [17] obtained from the proba-
bility mass functions of and

NDMA

BNDMA

Notethat theabovedistributionsassumeindependenceofqueues.
This has already been assumed and discussed in Section V.
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From the point of view of a particular user, every CR epoch in
an asymmetric NDMA or BNDMA system is either relevant or
irrelevant, just like a CR epoch in a symmetric system. There-
fore, delay in an asymmetric NDMA or BNDMA system is also
approximated by modeling each queue as an M/G/1 queue with
server vacations, where service time is equal to the average rel-
evant epoch length, and vacation time is equal to the average
irrelevant epoch length.

To find approximate delay expressions for an asymmetric
G-BNDMA system, we use the random packet assignment ap-
proximation as in the steady-state analysis (see Section VI-B).
Hence, we analyze delay of a BNDMA system with
terminals with rates ( ) for all sub-
queues of theth queue of the original system. Each subqueue
can transmit at most one packet during an epoch. Note that by
using this approximation, the average delay is the same for all
subqueues of the same queue because they have the same
(see Section VI-B). Therefore, we need only find approximate
delay expressions for each queue. Hence, we develop a unified
approach to approximating delay of any asymmetric NDMA or
BNDMA or G-BNDMA system, where different queues may
have different s and, hence, different relevant and irrelevant
epoch length distributions and delay.

Let , ,
, be the state of the approximate

G-BNDMA model, where denotes the state of the
th subqueue of theth queue at the beginning of theth

epoch. Let and denote the relevant and irrelevant epoch
length of any subqueue of theth queue. Note that by setting

for all , accommodates NDMA
and BNDMA as well.

Thus, delay is estimated by using the following approxima-
tion:

(24)

The first and second moments of and depend on the
steady-state behavior of all the queues and, hence, are func-
tions of , , , . The probability mass functions

and sum up the probabilities of all the
realizations in which all the subqueues, except for the subqueue
of interest transmit packets, given the epoch length. Based on
NDMA and BNDMA protocols, and are related as follows:7

NDMA

relevant epoch:

irrelevant epoch: if , then

and

else

BNDMA
relevant epoch:

irrelevant epoch:

(25)

7In NDMA, if epoch is irrelevant andb = 1, the only realization in whicht =
0 packets are transmitted (all-zero state) is counted together with realizations in
which t = 1 packet is transmitted.

Again, assume independence of queues. Let
, and define

and

and

(26)

where denotes the index of the subqueue of interest.
Hence, and are the sets of all permutations ofactive
subqueues during a relevant or an irrelevant epoch, respectively.
This and (25) gives the following distribution of relevant and
irrelevant epoch length8

(27)

Note that providing a BNDMA system with the simultaneous
multiple packet transmission from each queue not only im-
proves the stability margin, but it can also decrease delay. This
is corroborated by simulations. In particular, in a symmetric
system, the following holds.

Proposition 3: Consider the approximate delay expression
for the G-BNDMA system in (24), assuming independence
of queues, random packet assignment, and M/G/1 queue with
server vacation approximation. In the noiseless case, if

and , then the average delay decreases as
increases, for all values of offered traffic load .
The proof is given in the Appendix. Note, however, that there

are practical limitations on .

VIII. SIMULATION RESULTS

We performed Monte Carlo (MC) simulations of the NDMA,
BNDMA and G-BNDMA systems. The values of probabilities
that the th queue is empty and the delay of the th
queue packets obtained by simulation (in the noiseless
case) are compared with the analytic results. The delay of each
system is compared with the delay of slotted ALOHA with
first-come-first-serve (FCFS) splitting protocol for collision

8Recall that in the G-BNDMA case,P denotes the probability that a sub-
queue of thejth queue is empty.
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Fig. 1. NDMA: P versus total load.

Fig. 2. NDMA: Delay versus total load.

resolution, which was obtained by simulation. The simulated
(G/B)NDMA systems have queues with arrival rates

. and are plotted
against total offered traffic load . Note that in the
noiseless case, throughput is equal to offered load for all four
protocols considered (NDMA, BNDMA, G-BNDMA, FCFS
splitting), provided a system is stable.

Figs. 1 and 2 depict versus and versus

, respectively, for NDMA. Fig. 2 also shows a compar-
ison of NDMA versus FCFS (dash–dotted line). The full lines
denote MC simulation results, and the dashed lines depict ana-
lytic results. We see that at low to medium traffic loads, s
are accurately estimated, which corroborates our assumption
that queues are practically independent. However, at medium to
high traffic loads, queues are coupled so that the actuals are
lower than estimated. At low to medium traffic loads, simulation
results for delay are close to analytic results and even slightly
better. Note that analytic results for NDMA delay are based on
the M/G/1 queue with server vacation approximation, which is
valid if service time (relevant epoch length, ) and vacation
time (irrelevant epoch length, ) are independent. However,

Fig. 3. BNDMA: P versus total load.

Fig. 4. BNDMA: Delay versus total load.

both depend on offered load and must be dependent [15]. Cor-
rect estimation of s at low to medium traffic loads and de-
pendency of epoch lengths yield actual delay that is lower than
estimated. At high traffic loads, low-rate users’ delay remains
smaller than estimated due to dependency ofand in the
M/G/1 model. However, high-rate users’ delay is significantly
higher than estimated. To explain this, note that actual values of

s are smaller than estimated so that actual values of
and are larger than estimated. In addition, due to de-
pendency of queues, epoch lengths do not have binomial distri-
bution. Simulations show that actual distribution yields higher
values of and , given . Thus, for high-rate
users, high actual values of the second moments significantly
increase total delay and make it higher than estimated. Inter-
estingly, for medium-rate users, overestimation of delay due to
M/G/1 approximation and underestimation of delay due to un-
derestimation of the first and second moments of epoch lengths
cancel each other, yielding accurate delay estimation.

Figs. 3 and 4 show results for BNDMA with the same nota-
tion as for NDMA. Note that for BNDMA, the steady-state anal-
ysis in Section V is exact, i.e., it takes queue dependence into
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Fig. 5. Gen. BNDMA:P versus total load.

account. Hence, analytic results are accurate, even at high
loads. Delay is lower than estimated, except for the highest rate
user at high offered load. Lower actual delay is due to depen-
dence of and in the M/G/1 approximation, which yields
a pessimistic estimate of delay, given correct estimates ofs.
In addition, note that at high traffic loads, epoch length distribu-
tion is not binomial. The actual distribution yields higher values
of and , given . This increases actual delay
and even compensates for delay overestimation due to M/G/1
approximation.

For generalized BNDMA, we used the following values for
multipacket transmissions .
Note that theoretic results for both and are based on
independent queues and random packet assignment (RPA) ap-
proximations, whereas delay analysis also includes the M/G/1
with server vacation approximation. The results are presented in
Figs. 5 and 6. Clearly, multipacket transmissions improve per-
formance compared to BNDMA. The discussion on B-NDMA
applies here as well. Note that the estimated delay for users 1
and 3 is the same because they have the sames. However,
actual delay of user 3 is lower. This is due to RPA approxima-
tion, which yields pessimistic delay estimation for users with
multipacket transmission. In addition, note that user 2 has the
lowest ratio and, hence, highest and lowest delay.

IX. CONCLUSIONS

A unified stability and steady-state analysis of a class of colli-
sion resolution protocols with retransmission diversity has been
provided. This bridges a gap in earlier analyses. For NDMA,
a unique sufficient and necessary condition for stability is ob-
tained, assuming Poisson arrivals.9 It proves that NDMA has
maximum throughput that approaches 1. For BNDMA, a suf-
ficient stability condition is obtained for deterministic fluid ar-
rivals, whereas the same condition is necessary when Poisson
arrivals are assumed. Based on these results, a generalization

9The behavior of the system at the stability region boundary was not consid-
ered.

Fig. 6. Gen. BNDMA: Delay versus total load.

of BNDMA, which allows multiple packet transmission from
the same queue, is proposed. It is proven that the latter protocol
has increased maximum stable throughput, which can be made
close to 1. The tools used in the stability analysis range from a
preliminary dominant system approach to the Foster–Lyapunov
criterion and Cruz’s deterministic fluid approach. The
stability, steady-state, and delay analyses are extended to asym-
metric (multirate) systems. Simulations show that the analysis
provides good approximation of the delay performance for the
whole class of protocols.

APPENDIX

Proof (Proposition 2): For NDMA, first note that we con-
sider only the case when . Otherwise, (19) can be
reduced to a system with equations in un-
knowns, where is the number of queues with . Let

.
By multiplying the th equation by and subtracting

it from the th equation, , the following equivalent
system is obtained:

for and

If , then , so that all equations except theth
can be divided by . Without loss of generality, suppose that

. Let , for . Further, assume that
is the highest arrival rate [ , one can always

enumerate queues in such a way]. Therefore
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Substitute , for into
:

where

...

...

Therefore, the equivalent system of equations becomes

for

where , for , ,
and . Hence, , , for ,

, and . It follows that

For , we have

Therefore, has a unique solution in . Since
, , also has a unique solution in (0, 1). The complete

solution boils down to polynomial rooting of in
(0, 1).

For BNDMA, from (19) [BNDMA] and (sta-
bility is assumed), it follows that , which
gives .

Proof (Proposition 3): Under the conditions of Proposition
3, the average number of transmitted packets during an average
length epoch is

(28)

Note that is not a function of . From the definition of relevant
and irrelevant epoch lengths, we find

(29)

Let (multiuser system) and . We will show that
.

It can be shown that

(30)

where

(31)

From (28), it follows that
. Since the aim is to prove that

, , it suffices to show that
, and for

.

1) .
2) and .
3) is always

convex–U. The discriminant of is .
Hence, has no real roots, so that , .

It follows that ,
.
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