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Optimal Particle Filters for Tracking a Time-Varying
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Abstract—We consider the problem of tracking the time-varying
(TV) parameters of a harmonic or chirp signal using particle fil-
tering (PF) tools. Similar to previous PF approaches to TV spec-
tral analysis, we assume that the model parameters (complex am-
plitude, frequency, and frequency rate in the chirp case) evolve ac-
cording to a Gaussian AR(1) model; but we concentrate on the im-
portant special case of a single TV harmonic or chirp. We show that
the optimal importance function that minimizes the variance of the
particle weights can be computed in closed form, and develop pro-
cedures to draw samples from it. We further employ Rao–Black-
wellization to come up with reduced-complexity versions of the op-
timal filters. The end result is custom PF solutions that are consid-
erably more efficient than generic ones, and can be used in a broad
range of important applications that involve a single TV harmonic
or chirp signal, e.g., TV Doppler estimation in communications,
and radar.

Index Terms—carrier frequency offset, chirp, Doppler, particle
filtering, polynomial phase, radar, time-frequency analysis, time-
varying harmonic, tracking.

I. INTRODUCTION AND DATA MODEL

S PECTRAL analysis and time-frequency analysis are core
tools in signal processing research (e.g., [6] and [17]).

Time-varying (TV) spectra arise in a broad range of important
applications: from speech, to radar, to wireless communica-
tions.

TV spectral analysis tools range from basic nonparametric
approaches such as the spectrogram, to the Wigner–Ville and
other time-frequency distributions, and on to parametric ones
such as polynomial basis expansion models, and TV line spectra
mixture models.

Line spectra mixtures (whether stationary or TV) entail a non-
linear observation equation, which complicates parameter esti-
mation. When the evolution of model parameters can be cap-
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tured in state-space form, particle filtering (PF) tools become
particularly appealing for tracking the model parameters, and
there have been several contributions in the recent literature
dealing with PF approaches to TV spectrum estimation [1], [2],
[5], [12], [13], [21].

PF algorithms for tracking time-varying phase and amplitude
are considered in [2]. While it is possible to derive instanta-
neous frequency and frequency rate estimates by taking succes-
sive phase differences, such an indirect approach is ad hoc and
problematic in practice.

For a multicomponent TV harmonic mixture model, PF ap-
proaches have been pursued in [1] and [12]. In [1], the evolution
of harmonic parameters (frequencies, complex amplitudes, pos-
sibly also decay rates) follows a moving average (MA) model,
the measurement follows a Gaussian TV autoregressive (TVAR)
model, and an improved auxiliary particle filtering algorithm is
applied to track the parameters. In [12], a Gaussian random walk
model is employed for the evolution of the parameters, and an
unscented PF algorithm is adapted to track them. The use of tem-
poral slices of the spectrogram in the measurement equation of
[12] limits the attainable time-frequency resolution. Follow-up
work in [13] uses the spectrogram to design the importance dis-
tribution for the frequency, the underlying assumption being that
frequency is locally constant (see also [5] and [21] for an appli-
cation of TVAR modeling to the enhancement of speech sig-
nals).

Gaussian AR models of the evolution of harmonic mixture
parameters are plausible and convenient in many situa-
tions—e.g., they can capture smoothness due to inertia or other
physical constraints. Following [1] and [12], we also assume
that the parameters (complex amplitude, frequency, and fre-
quency rate in the chirp case) evolve according to a Gaussian
AR(1) model; but we concentrate on the important special case
of a single TV harmonic or chirp signal.

The specific model we use for a TV harmonic is as follows.
Let denote the state at time , where1

and denote instantaneous frequency and complex am-
plitude. The state is assumed to evolve according to the fol-
lowing AR(1) model:

where is 2 2 diagonal, , with

equal to (with typically small, e.g., ).
The process noise sequence is independent and identically dis-

1� � � � , where � is the instantaneous frequency of the underlying
continuous-time signal at time � � �� , and � is the sampling period. We are
interested in estimating � . There is potential for aliasing due to sampling, but
we are interested in tracking small offsets and slow drifts.
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tributed (i.i.d.). The process noise vector at time consists of
two independent random variables with the following marginal
statistics:

where , stand for the (real) normal and circularly sym-
metric complex normal distribution, respectively. The measure-
ments are related to the state via the measurement equation

where denotes i.i.d. measurement noise.
Given a sequence of observations , the problem of

interest is to estimate the sequence of posterior densities, that is
, . Given , one

can estimate via the associated (posterior) mean.
For the above model (and its extension to a TV chirp), we

show that the optimal importance function (that minimizes the
variance of the particle weights) can be computed in closed
form, and develop procedures to draw samples from it. Com-
puting the optimal important function in closed form was not
possible for the models in [1], [2], [5], [12], [13], and [21].
We further employ Rao–Blackwellization to come up with re-
duced-complexity versions of the optimal filters. The resulting
filters are considerably more efficient than generic ones, and can
be applied in a broad range of applications in digital communi-
cations and radar, such as tracking Doppler frequency and fre-
quency rate drift due to irregular motion.

The above model may appear benign in its simplicity, but it
is not. First, the measurement nonlinearity is severe. Second, in
contrast to a general time-varying phase model, we explicitly
model variations in instantaneous frequency. That is, we con-
strain the phase to be an affine function of time , but allow time-
varying jitter in the slope and the offset. These are precisely the
parameters of interest in wireless communications applications.
To appreciate the nature of the model, the following illustra-
tion is instructive. Fig. 1 depicts a sample path of the evolution
of the frequency variable, generated using ,

and . Time variation is—purposefully—extremely
slow: the frequency hovers around zero (notice the scaling of
the -axis). Fig. 2 depicts the result of frequency estimation
by peak-picking the spectrogram of the noiseless measurements
(amplitude fixed to 1 for clarity), using a rectangular window of
length 8, maximum overlap, and zero-padding to 256 samples.
The result may be surprising at first sight: one would perhaps ex-
pect the spectrogram-estimated frequency to hover around zero
as well, instead of steadily diverging towards white noise-like
behavior. The following simple result, whose proof can be found
in the Appendix, sheds light on this “paradox.”

1) Claim 1: Consider , where is a constant and is
a random variable with continuous probability density function
(pdf) . As , the pdf of the angle of approaches
a uniform pdf over .

Under our AR(1) model, can be written as a function
of times . It follows that is asymp-
totically independent of . In other words, even if
we know the frequency at the previous time step (in which
case the new frequency is known within small tolerance, due

Fig. 1. True frequency hovers around zero (notice scaling of �-axis).

Fig. 2. Peak-picking the spectrogram corresponding to Fig. 1 (fixed complex
amplitude � �, noiseless measurement, rectangular window of length 8, max-
imum overlap, zero-padding to 256 samples).

to the driving term), for large the angle will be uniformly
distributed—thus carrying no information about the new fre-
quency. The situation is worse with chirps, due to the presence
of the additional quadratic term in the exponent. Clearly, any
tracking algorithm (not only the spectrogram or PF) will simply
diverge after a certain point in time.2 The question is, Which
approach is best for small to moderate , and stays on-track
longer than others? This is what we explore in the sequel. Our
simulations indicate that PF approaches are far better than the
spectrogram in this context.

Remark 1: One might be tempted to think about periodi-
cally resetting the time axis by exploiting the shift property
of complex exponentials and absorbing the resulting factor in
the phase term. The spectrogram, however, operates on chunks
of data without regard to a time reference—effectively reset-
ting the time counter for every new window it processes—yet it
suffers from divergence. Furthermore, periodic resetting of the
time axis would introduce abrupt periodic changes in the phase,
which are inconsistent with phase noise.

Remark 2—Link to Weil’s Theorem: Weil’s theorem (e.g.,
see [15]) asserts that the distribution of the fractional part of

, for irrational (and fixed; denotes positive inte-
gers) is uniform in . In the context of Claim 1, let ,

2In certain applications in digital communications, detecting the onset of di-
vergence could trigger a cold start at the link level to reacquire synchronization
using training data.
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and denote fractional part. Then .
The pdf of has been assumed continuous, and thus a realiza-
tion of will be irrational with probability one. Weil’s theorem
then shows that the sample (empirical) distribution of the angle
of for a fixed realization of and all is uniform over

. In contrast, Claim 1 asserts that the ensemble distribu-
tion of the angle of is (approximately) uniform over
for a fixed large and random with continuous pdf. So, Weil’s
Theorem applies to sample path averages, whereas Claim 1 to
asymptotic ensemble averages. The ensemble distribution con-
verges to the sample path distribution for large ; this is
an ergodic property of the random process . Interestingly,
Claim 1 does not require to be integer.

II. PARTICLE FILTERING

Particle filtering has emerged as an important sequential state
estimation method for stochastic nonlinear and/or non-Gaussian
state-space models, for which it provides a powerful alternative
to the commonly used extended Kalman filter. See [3], [8], and
[9] for recent tutorial overviews.

In particle filtering, continuous distributions are approxi-
mated by discrete random measures, comprising “particles”
and associated weights. That is, a continuous distribution
( is a time index) is approximated as

where denotes the Dirac delta functional, is the th
particle (location) for time and is the associated weight.
A useful simplification stemming from this approximation is
that the computation of pertinent expectations and conditional
probabilities reduces to summation, as opposed to integration.
While this can also be accomplished via direct discretization
over a fixed grid, the use of a random measure affords flexibility
in adapting the particle locations to better fit the distribution of
interest.

If we aim for an online filtering algorithm, in which the state
at time should be estimated from measurements up to and
including time , the key distribution of interest is the pos-
terior density . The basic idea of particle fil-
tering, then, is to begin with a random measure approximation
of the initial state distribution, and, as measurements become
available, derive updated random measure approximations of

, . That is, we seek random mea-
sure approximations

from which the state at time can be estimated via the asso-
ciated posterior mean . In particle fil-

tering, the updates—the derivation of from

—are based on the Bayes rule [3], [8].
A random measure approximation comprises two compo-

nents: the particles (locations) and the associated weights. If

we could sample from the sought posterior ,
then all particle weights would have been equal. Unfortunately,
such direct sampling is not possible in most cases, and thus
we resort to sampling from a so-called importance function
that “resembles” the desired posterior, and from which samples
can be drawn with relative ease. The mismatch between the
sought density and the importance function is compensated in
the calculation of weights, chosen proportional to their ratio
evaluated at each particle [3], [8].

Different types of particle filters may be applied to a
given state-space model. The various particle filters primarily
differ in the choice of importance (or, proposal) function.
Different importance functions yield different estimation per-
formance—complexity tradeoffs. Perhaps the most intuitive
choice of importance function is the prior importance function

; i.e., the th particle is updated by propagating
it through the state-evolution part of the system. This is a
common choice, for simplicity considerations. The drawback is
that particles evolve without regard to the latest measurement,
which only comes into play in the ensuing weight update. When
using the prior importance function, the weight update at time
instant is given by , followed by
normalization to enforce .

Regardless of the particular importance function employed, a
common problem in particle filtering is degeneracy: the weights
of all but a few particles tend to become negligible after a few
iterations [3], [8]. Degeneracy can be detected via degeneracy
measures, and mitigated via resampling techniques [3], [8]. Re-
sampling the discrete measure replicates particles with large
weights and removes those with negligible weights. All par-
ticle weights become equal after resampling. There exist several
computationally efficient resampling schemes that can
be used to avoid the quadratic cost of brute-force resampling
[3], [8].

From the viewpoint of minimizing the variance of the
weights, the optimal importance function (OIF) is given by [3],
[8]

where denotes the th particle at time ,
which is computed by plugging the th particle at time into
the OIF above, and drawing a sample from it. The OIF usually
strikes a better performance—complexity tradeoff than other al-
ternatives. There are, however, two difficulties associated with
the use of the OIF. First and foremost, it requires integration to
compute the normalization factor, which is usually intractable
due to nonlinearity. Second, sampling from the optimal impor-
tance function is a rather complicated process. Thankfully, for
our particular model, it turns out that it is possible to carry out
the integration analytically. This is explained next.

III. OPTIMAL IMPORTANCE FUNCTION: TV HARMONIC CASE

Define a dummy variable , and let
. Then [see
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the first equation at the bottom of the page]. Letting
, , ,

where extracts the angle of its argument, it can be shown3

that

with the multiplicative factor given by

where denotes the modified Bessel function of the first
kind of order . The sum term for is quite interesting. Due to
the negative exponential dependence on , , and the properties
of modified Bessel functions, it vanishes quickly with and .
Given , it is easy to come up with a closed-form upper bound
on the truncation error, which is, however, overly conservative.
Truncation to 20 terms is adequate in all cases considered in our
experiments—adding more terms does not affect the results. We
used 100 terms as an extra safety margin in our simulations.

We can use rejection [7, pp. 40–42] to generate samples from
the optimal importance function [see the last equation at the
bottom of the page].

The basic idea of rejection-based sampling can be sum-
marized as follows [7, pp. 40–42]. Suppose we wish to
draw samples from a density , for which there exists a
dominating density and a known constant such that

. In practice, we choose to be easy
to sample from, and such that is as small as possible. The
rejection method then works as follows.

Algorithm 1:

1) Draw a sample from and an independent sample
uniformly distributed in ).

2) Set .
3) If , then accept and return ; else reject and go

to Step 1.

3Detailed derivation of this and other results in the paper are available as
supplementary material in ieeexplore.

It can be shown that the above rejection method generates
samples from the desired density , and the mean number of
iterations until a sample is accepted is (thus the desire to keep

as small as possible). Furthermore, the distribution of the
number of trials is geometric with parameter , which
means that the probabilities of longer trials decay exponentially
[7, p. 42].

Let

and

Using the triangle inequality, it can be shown that a suitable
dominating density is

where

For this particular choice of IF and sampling procedure the
weight update step is given by
and can be carried out before sampling from the optimal impor-
tance function (before the particles are propagated to time-step

).

IV. RAO–BLACKWELLIZATION

For our particular state-space model, it is possible to reduce
the dimensionality of the problem via a technique known as
Rao–Blackwellization (see [10], [11], [18], and references
therein). Conditioned on frequency, our model is AR(1) linear
Gaussian on the complex amplitude. The basic idea is to exploit
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this structure to avoid computing everything with plain Monte
Carlo sampling. The particle filter is only used to handle the
purely nonlinear portion of the state-space.

Reference [18] considers a general nonlinear state-space
model that contains a conditionally linear part, and works out
the Rao–Blackwellization procedure in detail. Our particular
model is a special case of the so-called Diagonal Model in [18];
however, we use the OIF to draw samples for the nonlinear
part. The choice of importance function is left open in [18]
to maintain generality—usually the OIF cannot be computed
analytically.

The desired posterior pdf at time , can
be written as

This factorization enables us to use particles only to approx-
imate , which is a one-dimensional pdf;

can then be analytically computed using
the Kalman filter. For state estimation, a Kalman filter is
associated to each frequency particle, and the conditional
mean filtered estimate of the Kalman filter is used to fill-in the
“missing” amplitude dimension.

We use the optimal importance distribution to approximate
the marginal posterior density . The optimal
importance distribution is

Letting ,
, , it can be shown

that [see the equation at the bottom of the page] with

The weight update is given by ,
with

To generate samples distributed according to
, we could employ the transforma-

tion method [7]: this is, after all, a one-dimensional pdf.
Still, this requires another integration and some level of
approximation (the integral cannot be put in closed form). As
an alternative, we found that rejection for this one-dimensional
pdf is far more efficient than in the previous case (which
involved three real dimensions), and delivers exact samples,
which is a definite advantage relative to other sampling
methods. A common criticism of rejection for real-time
applications is that it takes a random number of draws per
particle. With as few as 30 to 50 particles, however, variance
is averaged out and the complexity per input measurement is
stable enough for our purposes.

Starting from and using the triangle in-
equality, it is straightforward to show that a suitable dominating
density is the transitional prior . The constant
associated with the accept-reject algorithm becomes

It is interesting to see that sampling from the optimal importance
function can be implemented by rejection over the transitional
prior, which is commonly used as importance function per se.
Pseudo-code for the Rao–Blackwellized optimal filter can be
found in Table I.

V. CRAMÉR–RAO LOWER BOUND

The Cramér–Rao lower bound (CRLB) for our model can be
computed using the recursive formula of Tichavsky et al. [20]
for the calculation of the Fisher information matrix, . The
state equation in our particular model is linear, Gaussian; this
allows considerable simplification of the general result in [20],
thus yielding

with

and
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TABLE I
RBPF USING OIF FOR TRACKING A SINGLE TIME-VARYING HARMONIC (SEE

TEXT FOR DEFINITION OF CONSTANTS)

At this point, it is convenient to rewrite our model in real-valued
form. Upon defining , where

extract the real, respectively imaginary part, we have

where , with being ,

with , and

with . Then

with being the matrix

For and , note that the expectation operator was
dropped because the respective Jacobians are independent of

the target state. The expectation operator in the expression for
can be easily estimated using MC integration; it can also

be calculated analytically, albeit the resulting formula appears
cumbersome. Putting terms together yields

The initial density is taken to be , in which
case .

VI. NUMERICAL RESULTS: TV HARMONIC CASE

In our simulations, we benchmark the performance of our
optimal particle filters against the CRLB and four additional
filters: the extended Kalman filter, the SIR PF [14], the auxiliary
PF, and a regularized PF. These filters are briefly discussed next.

A. Extended Kalman Filter (EKF)

The EKF equations are well known, but they are rewritten
here for convenience. Recall from the previous section the real-
valued state-space model. Since the state equation is linear, state
prediction is performed using the standard Kalman filter equa-
tions

Since the measurement equation is nonlinear, the filter update is
carried out using

where , , with
being the Jacobian of the nonlinearity involved in the

measurement equation (denoted as ), this time evaluated
at the filter’s estimate (see previous section).

B. Regularized PF (RPF)

This algorithm is identical to the sampling importance resam-
pling (SIR) algorithm, which uses the prior importance func-
tion, except for a “jittering” of the resampled particles (using
a normal distribution kernel) in order to protect the filter from
sample impoverishment; see, e.g., [3]. Since the process noise
in our model is relatively small, this modification is expected to
improve the performance over the standard SIR. However, this
filter also has well known disadvantages—the samples are no
longer guaranteed to approximate the posterior density asymp-
totically in the number of particles.

C. Auxiliary SIR (AUX) Filter

The particular algorithm used is the auxiliary SIR filter intro-
duced by Pitt and Shephard (see [16]). This filter tries to explore
the state-space in a more sophisticated way than the SIR filter.
This is done by resampling at the “previous” time step based on
certain point estimates that capture the essential features of the
posterior density. This approximation can be inefficient when
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Fig. 3. Probability density of � . Shape parameters: � � � � ���.

the process noise is large, or when the auxiliary index varies a lot
for a fixed prior. When process noise is small enough, though,
the AUX filter is reported to improve the performance over the
standard SIR.

D. Rao–Blackwellized PF Using OIF (RBPF)

The plain version of PF using the OIF employs rejection for a
thee-dimensional distribution, which is not appealing in terms of
complexity. The Rao–Blackwellized version performs equally
well in terms of tracking performance for the same number of
particles, but is much faster—up to 100 times faster in our sim-
ulations. Therefore, we only present results for the Rao–Black-
wellized version.

E. Initialization Issues

In this section, we investigate the impact of prior knowledge
on the CRLB curves. We start by examining the case where al-
most no prior information about the frequency component of
the initial state vector is available. For the initial density of
the complex amplitude, we take a narrow Gaussian with mean

and standard deviation . A beta
distribution is used to model the initial density of the frequency
component

for , where stands for the Gamma function, and
, are the shape parameters. The beta distribution contains

the uniform distribution as a special case.
While in simulations we generate according to , we

also need a Gaussian approximation for carrying out CRLB and
EKF computations, since both are premised on the assumption
that the initial density is Gaussian (note that this is not required
for the particle filters). The mean and standard deviation of the
best-fitting Gaussian can be found in [4]

An illustration of such an approximation is presented in Fig. 3.

Fig. 4. Comparison of
�

CRLB curves (frequency estimation) for inaccurate
prior information.

Fig. 5. Comparison of
�

CRLB curves (frequency estimation) for accurate
prior information.

Figs. 4 and 5 demonstrate the effect of prior information on
the CRLB. The following parameters were used: ,

, , , , —thus
the accuracy of prior information is determined by

. The expectation appearing in the CRLB formulas was
approximated using 100 realizations of the state vector. Observe
that the CRLB with prior knowledge is initially lower, although
the significance of prior information diminishes very quickly
over time and the bounds become indistinguishable for .
Increasing the value of , the CRLB with prior knowledge
approaches the one with no prior knowledge.

F. Estimation Performance Results

We now focus on the frequency estimation performance of
the five aforementioned filters in a tracking mode, wherein the
initial state is assumed to be known exactly—corresponding to
a Dirac delta initial distribution. The CRLB and the EKF as-
sume that the initial density is a Gaussian. This mismatch is dealt
with by using a very tight density (very small initial variance) to
approximate a delta distribution. The expectation appearing in
the CRLB was approximated using 100 realizations of the state
vector. The error curves corresponding to the five filters were
produced by averaging over 200 independent Monte Carlo (MC)
runs, each comprising 100 temporal samples. The conditional
mean was used to generate point estimates for the particle filters.
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Fig. 6. RMSE (frequency estimation) comparison of the four particle filters,
EKF, spectrogram and

�
CRLB with accurate prior information. Number of par-

ticles: 1000 for SIR, 1000 for RPF, 800 for AUX, 50 for RBPF.

TABLE II
MEAN COMPUTATION TIMES IN SECONDS—(STVH CASE)

System parameters were set to , , ,
, , and multinomial resampling was em-

ployed.
We compared computational and memory complexities for

approximately equal estimation performance. Since accuracy
is a major concern, the number of particles for each algorithm
was chosen to yield RMSE close to the CRLB. Accordingly, the
number of particles, , was 1000 for SIR, 1000 for RPF, 800
for AUX, and 50 for RBPF.

The results are summarized in Fig. 6, which also includes the
spectrogram peak estimator as yet another baseline. A rectan-
gular window comprising eight samples, zero-padding to 128
samples, and maximal overlap factor were used to compute the
spectrogram, followed by peak-picking to estimate the instanta-
neous frequency.

It is satisfying to see that the four particles filters and the EKF
operate close to the CRLB, and RBPF in particular performs that
well with order-of-magnitude less particles. This being a three-
dimensional state-space, such good performance with only 50
particles is not at all obvious. SIR, RPF and AUX filters perform
very poorly with less than a few hundred particles in this context.
The average computation time per measurement (time-step) for
each algorithm is listed in Table II. Observe that RBPF is the
fastest among the particle filters, in addition to its far lower
memory requirements.

Notice that all filters in Fig. 6 eventually diverge from the
CRLB, with EKF being the first to do so. Consistent with our
earlier discussion regarding Claim 1 , the spectrogram steadily
diverges in this case, and from early on. Interestingly, its per-
formance is order-of-magnitude worse than that of the particle
filters.

Remark 3: We note that the particle filters are robust with re-
spect to model parameter mismatch. In particular, RBPF using

, , (i.e., 2 the actual

Fig. 7. RMSE (frequency estimation) comparison of RPF, EKF, and
�

CRLB
with inaccurate prior information.

variance parameters used to generate the input data) performs
essentially the same as RBPF using the correct variance param-
eters—the only difference is that the onset of divergence appears
slightly earlier (at time index 80 instead of 85).

In Fig. 6, it appears that EKF offers a good performance/com-
plexity tradeoff in the case where the initial information is very
accurate; however, its performance is severely degraded when
the initial information about the frequency is coarse. In that case,
the particle filters can still yield very good performance. To il-
lustrate this, Fig. 7 presents a simple performance comparison
between the EKF and RPF (with 1000 particles) when the initial
frequency information is inaccurate with , and
otherwise the same system and noise parameters as above. The
error curves corresponding to the two filters were produced by
averaging over 500 independent MC runs.

VII. EXTENSION TO TV CHIRP SIGNAL

In the following, we extend our results to the case of a TV
chirp.

A. TV Chirp Model

Let denote the state at time , where
, and denote the instantaneous

frequency rate, frequency, and complex amplitude respectively.
Once again, we shall assume that the state evolves according to
the following simple AR(1) model:

where is 3 3 diagonal, , with
close to 1. The process noise sequence is i.i.d. The process noise
vector at time consists of three independent random variables
with the following marginal statistics:

The measurement is related to the state via

where denotes i.i.d. measurement noise.
Again, the problem of interest is to estimate the sequence of
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posterior densities, , given

.

B. OIF

Let , ,
. For the TV chirp model, the normalizing factor

is given by the
multidimensional integral in the equation, shown at the bottom
of the page.

Let . It can be shown that

with the multiplicative factor given by

where denotes the modified Bessel function of the first kind
of order . Again, the sum can be truncated to a relatively small
number of terms (we used 100 terms in our simulations). This
is mainly due to the negative exponential dependence on , ,

and the decay property of the modified Bessel function with
respect to the order . The OIF can now be written as

What remains to implement the plain OIF filter for the TV chirp
case is to come up with a procedure to draw samples distributed
according to the above closed form. We have already described

the basic steps of rejection-based sampling. A similar procedure
can be applied here. Let again

and

Using the triangle inequality, it can be shown that

with

For this particular dominating density, it holds
with

Remark 4: In both cases considered (harmonic and chirp) the
constant which determines the complexity of the associated
rejection step is dependent on system parameters.

For this particular choice of IF and sampling procedure, the
weight update step is given by
and can be carried out before the particles are propagated to
time-step .

C. Rao–Blackwellization

We can again take advantage of the model structure and par-
tition the state vector into and . The

sought posterior at time-step , can be
factored as
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Fig. 8.
�

CRLB for the frequency component: very accurate prior information
and � � ��.

Again, is Gaussian and can be com-
puted using the Kalman Filter. To approximate the marginal
posterior , we use the optimal importance
density

which again admits closed form expression. Letting
, ,

and , it can be shown that

with

The weight update is given by
, with

We shall again employ an accept-reject algorithm to gen-
erate samples distributed according to the OIF. Using the tri-
angle inequality and monotonicity of , it is easy to show
that is a suitable dominating density
for which it holds that

with . Again, notice that sam-
pling from the optimal importance function can be implemented
by rejection over the transitional prior.

D. Cramér–Rao Lower Bound

In this section, we present the CRLB for the TV chirp case.
Rewriting the model in real-valued form and using the results
in [20], we end up with the desired recursive equation for the
calculation of

where now , with being ,

, , and

is the matrix defined as

which is the Jacobian of the nonlinear function involved in the
measurement equation, evaluated at the true value of the (real-
valued) state vector .

The initial information matrix is calculated from the initial
density , which is assumed Gaussian . In that
case, the recursions may start by choosing .

The best achievable performance concerning the frequency
and the frequency rate component of the state vector, in the case
of very accurate initial information (an initial pdf with a very
small variance), is presented in Figs. 8 and 9, respectively, for

. The behavior of the bounds as grows is illustrated
in Figs. 10 and 11 respectively. System parameters were set
to , , , , ,

. The expectation appearing in the CRLB was approx-
imated using 100 realizations of the state vector. Observe from
these figures that the bounds are initially growing. This is due to
the fact that the initial information was very precise, however,
the effect of such an accurate prior knowledge are gradually van-
ishing over time. Approximately after 600 time steps the CRLB
for the frequency rate component of the state vector is starting
to decrease. Observe, however, that this is not happening for the
frequency component, which exhibits much faster time varia-
tion than the frequency rate in this experiment, so the latter is
easier to track.

Accurate prior knowledge is not always available. The best
achievable error performance in the case of inaccurate prior is
illustrated next. A Gaussian initial density can
be used to model the initial density concerning the frequency
rate component of the state vector. In the (slowly) TV harmonic
case, we have seen that inaccurate initial information only has
measurable impact on the initial performance. To illustrate that
this is not the case for TV chirp signals, consider a scenario
where the initial information about the frequency rate compo-
nent is inaccurate, whereas the initial frequency is accu-
rately known. For the complex amplitude , we take a narrow
Gaussian with mean and standard deviation
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Fig. 9.
�

CRLB for frequency rate component: very accurate prior information
and � � ��.

Fig. 10.
�

CRLB for frequency component: very accurate prior information
and � � �����.

Fig. 11.
�

CRLB for frequency rate component: very accurate prior informa-
tion and � � �����.

. The resulting bounds on estimation perfor-
mance are plotted in Figs. 12 and 13 for the frequency and fre-
quency rate, respectively. Observe that inaccurate initial infor-
mation concerning has a deleterious effect on the best achiev-
able error performance for both frequency and frequency rate.
Accurate initial information about the frequency rate is critical
for acceptable tracking performance in this context.

E. Estimation Performance Results

We now present tracking results for the TV chirp case.
We consider two PF algorithms: the SIR filter, which uses
the transitional prior as importance distribution, and the
Rao–Blackwellized filter which uses the optimal importance
density (RBPF). The RMSE results concerning the frequency

Fig. 12.
�

CRLB for frequency component: dependence on the accuracy of
prior information.

Fig. 13.
�

CRLB for frequency rate component: dependence on the accuracy
of prior information.

Fig. 14. RMSE performance comparison in TV second-order PPS case: SIR ,
RBPF, and

�
CRLB for the frequency rate parameter. Number of particles: 1000

for SIR, 50 for RBPF.

rate and frequency are presented in Figs. 14 and 15, respec-
tively.

The filters are again considered in a tracking mode—we as-
sume perfect knowledge of the initial state. The expectation
appearing in the CRLB was approximated using 100 realiza-
tions of the state vector. The error curves corresponding to the
two filters were produced by averaging over 500 independent
runs, each comprising 100 temporal samples. The conditional
mean was used to generate point state estimates. System param-
eters were set to , , , ,
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Fig. 15. RMSE performance comparison in TV second-order PPS case: SIR ,
RBPF, and

�
CRLB for the frequency parameter. Number of particles: 1000 for

SIR, 50 for RBPF.

, , and multinomial resampling was em-
ployed at each time step. The number of particles, , was 1000
for SIR and 50 for RBPF.

Notice from the simulation parameters that we have assigned
a very small amount of noise in the frequency rate evolution,
thus allowing (capturing) only very small variations in this term.
It is however encouraging to observe that although we have used
only 50 particles in RBPF’s implementation, the two filters yield
very similar estimation performance (SIR with 1000 particles
seems slightly better), which is also very close to the CRLB.
The average computation time per measurement (time-step) was
0.08419 s for SIR and 0.06498 s for RBPF (measured using
Matlab tic/toc).

VIII. CONCLUSION

We considered the problem of tracking the parameters of a
single TV harmonic or chirp signal using particle filtering tools.
We showed that the importance function which minimizes the
variance of the particle weights can be computed in closed form,
and developed suitable rejection-based procedures to sample
from the optimal importance function. We further derived effi-
cient versions of the optimal filters based on Rao–Blackwelliza-
tion. With as few as 50 particles, the optimized particle filters at-
tain estimation performance comparable to that of generic par-
ticle filters employing 1000 particles. Using the recursive for-
mula of Tichavsky et al. [20], we also computed the pertinent
CRLBs and explored their behavior as a function of model pa-
rameters and the accuracy of prior information concerning the
initial state.

A limitation of all tracking approaches considered is that
process noise variance should be small (state evolution should
be smooth) for good tracking performance. This is to be
expected of course—the models considered are generically
unidentifiable and one relies on smoothness to obtain mean-
ingful estimates. Still, many potential applications (e.g.,
tracking of Doppler shift in mobile terrestrial communications,
or residual carrier frequency offset following coarse acquisi-
tion) meet this requirement.

There are several extensions that could be pursued: a single
higher order TV polynomial phase signal, or multicomponent
TV harmonic or chirp signals. Both entail an expansion of the
nonlinear part of the state-space and thus hit on the “curse of di-
mensionality.” Custom design of particle filters for these cases

hinges on the development of efficient state-space decomposi-
tion strategies, which is a matter of engineering art.

APPENDIX

Proof of Claim 1: The pdf of is given by
, which is an expanded version of . Since

, let us define . We will prove
that, as , the pdf of approaches a uniform pdf over

.
Split the interval into equal subintervals of length

. Take sufficiently large for and
to be approximately constant over each subinterval. Without
loss of generality, choose arbitrary .
From the definition of the modulo operation, it follows that

We have assumed that is continuous, and therefore so is ;
it follows that

since is bounded.
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