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Abstract. The refractive index profile of one-dimensional gradient-index
(GRIN) samples can be measured using the incident and exit beam angles
of multiple beams passing through the sample at different positions along
the index gradient. Beginning from a region of known refractive index, the
collective angular deflection measurement of multiple beams is boot-
strapped to compute the index profile of the entire sample. An alternative
method using an approximate beam displacement model and a corrective
algorithm is also presented. The two techniques are used to measure the
index profile of a thick GRIN sample, and experimental results show good
agreement with a maximum discrepancy of 1.5 × 10−3 in the calculated
index. An index accuracy of 5 × 10−4 is predicted for the bootstrap method
employing typical micron-level spatial measurements. © 2013 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.52.11.112108]
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1 Introduction
Recent developments in the fabrication of gradient-index
(GRIN) materials make it possible to create increasingly
complex refractive index distributions. Several of these fab-
rication techniques are reported and discussed in Ref. 1.
These GRIN materials are proving to be useful in a variety
of applications. Fibers pulled from GRIN preforms can be
designed to reduce modal dispersion and thereby increase
the bandwidth and repeater distance of optical communica-
tion systems. Lenses made using GRIN profiles find appli-
cation in telecommunications and compact imaging, where
their small size and flat faces give them attractive packaging
properties. GRIN elements can also be combined with con-
ventional homogeneous glass elements to broaden the design
space of imaging lenses. In particular, GRIN lens
materials often have unique dispersion characteristics, mak-
ing them useful for chromatic aberration correction.2 Finally,
in recent studies, GRIN materials have shown utility in
coherent mode conversion and beam shaping applications.3,4

The integration of GRIN elements into an optical system
requires an accurate knowledge of the optical properties of
the inhomogeneous materials. The refractive index distribu-
tion of the GRIN element is of paramount importance
because it determines the propagation behavior of light
inside the medium. Conventional beam deflectometry meth-
ods use beam displacement5,6 or beam angle7 as a direct
measurement of the index gradient. These methods are accu-
rate only where the index gradient remains relatively con-
stant across the beam trajectory inside the sample. When a
significant amount of refraction occurs inside the sample,
fundamental geometric assumptions in these methods
become invalid and the measurements are difficult to inter-
pret. Interferometric methods use fringe patterns to recover
the phase profile of a beam propagating through the GRIN
sample.8 However, as the propagation distance through the

sample becomes substantial, resolving fringes becomes
impractical. In addition, ambiguity of the propagated phase
profile can result from interferometric measurements without
prior knowledge of the type of index variations present in the
GRIN sample (e.g., diffusion-based GRIN elements may be
restricted to regions of monotonic index variations based on
the physics of diffusion). This makes interferometry unreli-
able for measuring arbitrary GRIN materials. Holographic
methods have also been proposed that use multidirectional
measurements of optical path length to recover the index dis-
tribution of GRIN samples.9 However, the approximations
made in these methods are not well suited to applications
where a significant amount of refraction occurs inside the
sample. In addition, data acquisition using holography can
be very tedious. Older methods that do not have a practical
automated process of data acquisition and have difficulties in
accurate measurements when moderate index gradients are
present include prism methods10,11 and moiré patterns.12,13

In this paper, we propose a new measurement technique
that is based on a very simple fundamental relation for one-
dimensional (1-D) GRIN distributions14 that does not have
implicit restrictions on the magnitude of the index gradient.
This method is appropriate for both longitudinal index gra-
dients nðyÞ and radial index gradients nðrÞ. We show a very
straightforward method to acquire the necessary data and
describe a procedure for its analysis. We contrast this with
a second method that uses an iterative ray trace algorithm to
correct for intrinsic errors in previous measurement
procedures.

2 Ray Slope Measurements and the Bootstrap
Algorithm

The bootstrap algorithm relies on a fundamental relation that
follows directly from the ray equation in geometric optics.

d
ds

�
n
dr
⇀

ds

�
¼ ∇n; (1)
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where ds is the arc length along the ray path, r
⇀
is the position

vector of a point on the ray trajectory, and n is the refractive
index. If the index is only allowed to vary along y, the refrac-
tive indices at two locations along a ray path are related by
the slope of the ray at those locations14 (see Appendix):

1þ ðy 0
1Þ2

1þ ðy 0
2Þ2

¼ nðy1Þ2
nðy2Þ2

; (2)

where y 0 ¼ dy
dx denotes the slope of the ray at position y. If

the locations are taken to be the ray path at the input and
output surfaces outside the GRIN sample, then the applica-
tion of Snell’s law of refraction at those surfaces changes the
relationship in Eq. (2) to

nðyoutÞ2 ¼ nðyinÞ2 þ n2amb

� ðy 0
outÞ2

1þ ðy 0
outÞ2

−
ðy 0

inÞ2
1þ ðy 0

inÞ2
�
; (3)

where namb is the refractive index of the ambient medium.14

The quantities of interest are illustrated in Fig. 1.
Equation (3) is the fundamental relation for the bootstrap

algorithm. The method requires a measurement of the probe
beam’s input and output positions as well as its input and
output angles. It uses the index at the input end of the
beam to calculate the index at the output end, or vice
versa. Theoretically, it is possible to solve for the index dis-
tribution along a beam path that connects the input and out-
put rays by inverting an integral equation relating the beam
path and the refractive index distribution.15 However, a sol-
ution to the inversion of the integral equation is not always
guaranteed when measurement errors are present. In the
bootstrap algorithm, only the refractive indices at the input
and output locations of each ray path are pertinent. If the
refractive index is known at some position y0, then the
index everywhere in the GRIN sample can be calculated
using the relation in Eq. (3) if the input positions of all probe
beams used in the measurement coincide with y0, as illus-
trated in Fig. 2. In practice, however, the range of input
angles for the probe beams is restricted by total internal
reflection conditions. This limits the region of the GRIN
sample that can be measured in convenient experimental
setups.

The index is more typically known at the ends of the
GRIN sample. In this case, angled incidence can be used
to relate the fundamental expression in Eq. (3) for multiple
ray paths (i.e., the trajectories of different probe beams) and
the collective measurement can be bootstrapped to compute
the index distribution across the entire sample. In this meas-
urement geometry, as shown in Fig. 3, the incident beam is
angled to ensure there are always rays traveling from a
known region of the GRIN profile to the unknown region
(or vice versa).

The expansion of the known region of the GRIN profile
can be readily seen in Fig. 3, where the initially known
region of the sample is below the green dashed line. The
ray farthest from the known region that can be used to cal-
culate the index in the initially unknown region has output
position y1. With the help of Eq. (3), index values can be
calculated up to y3 and all values for y < y3 can be interpo-
lated from known or calculated values. This expands the
known region up to y3, allowing the output ray at y2 to be
used in a subsequent calculation. This process is defined as
one bootstrap in the algorithm, i.e., the process of expanding
the calculated index profile of the sample by applying Eq. (3)
to all applicable rays. Each bootstrap will yield new infor-
mation about the sample until all rays from the measurement
have been exhausted and the entire index distribution has
been computed. It is important to bear in mind that the boot-
strap process can terminate early if the incident angle is too
shallow and ray trajectories are bent aggressively toward the
unknown region by steep index gradients. In general, choos-
ing the appropriate angle of incidence and a sufficient num-
ber of probe beams is enough to guarantee the completion of
the algorithm.

3 Finite Beam Width Effects and Beam Shaping
Index gradients in inhomogeneous transparent materials are
able to manipulate the propagation of light rays inside the
medium, distorting the irradiance profile of an optical beam
passing through the sample. If the beam is narrow relative to
the index gradient, the distortion to its irradiance profile is
negligible and the beam behaves like an ideal light ray
(assuming diffraction can be ignored). However, a significant
change in the index gradient across the transverse profile of
the optical beam will cause a redistribution of the beam’s
irradiance. This beam shaping effect can yield additional
information about the index distribution in question.

Fig. 1 Illustrating the fundamental relation in Eq. (3).

Fig. 2 Measuring refractive index of a GRIN sample from a known
value at position y0.

Fig. 3 Angled incidence for bootstrapping refractive index
calculations.
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Energy conservation allows for a correspondence between
the field description of an optical beam and an equivalent ray
distribution2 when diffraction effects are negligible. Upon
establishing this relationship, beam shaping in inhomo-
geneous media can be treated as a distributed version of
beam deflection. An important question to ask is how the
propagation behavior of a finite-sized optical beam in an
inhomogeneous medium matches the behavior of the desired
ideal ray. In experimental measurements involving finite-
sized probe beams, the median of the beam irradiance profile
can be used as an estimate of the location of the ideal ray. In
the limit of infinitesimally small beam width, the ideal ray
must follow a path dictated by Eq. (1). As the beam size
increases, it can be shown through energy conservation that
if the individual paths of the rays contained in the optical
beam do not intersect with the ideal ray, the ideal ray path
will always coincide with the median of the optical beam, as
can be seen in Fig. 4.

If all rays in Fig. 4 carry the same amount of radiative
flux, then the total integrated flux on either side of the ideal
ray (dashed red) is constant between the two planes and
the location of the median must follow the path of the
ideal ray. Thus, a location of a single ray can be effectively
measured with a finite-sized beam by using the median of the
beam intensity under these circumstances. This is particu-
larly useful for experimental measurements.

Since beam shaping effects can be treated as a distributed
version of beam deflection, it is possible to obtain all the
beam deflection data required for the deflectometry measure-
ment using a single optical beam of sufficient width. By
measuring the irradiance profiles in two observation planes
outside the sample and applying energy conservation, a ray
distribution (specifying both angles and positions) can be
extrapolated for any plane outside the sample. An advantage
of using a simple beam shaping measurement with a wide
beam is that only a single measurement is needed. The caveat
is that because energy conservation is only applied at the
observation planes where the beam’s irradiance profile is
measured, it is assumed that the individual rays do not inter-
sect with each other between observation planes. This con-
dition imposes a constraint on the geometry of the
experiment. However, the primary issue for this type of
measurement is the presence of coherent noise in the system.
Due to the nature of this calculation, noisy irradiance profiles
can introduce a significant shift in the constituent ray
positions at the observation planes. The uncertainty in calcu-
lated ray positions due to coherent noise is typically much

greater than the uncertainty in conventional beam deflection
measurements.

4 Beam Deflectometry Based on Ray Position
In order to assess the performance of our proposed method,
we have compared it to previous methods of beam deflec-
tometry based on measuring the entering and exiting ray
positions rather than the ray angles.5 These methods contain
inherent approximations and are thus expected to be less
accurate than the one proposed in Sec. 2. In addition, the
method described in Ref. 5 requires normal incidence on
one surface of the GRIN sample in order to reduce the com-
plexity of the measurement.

The method is briefly described in Fig. 5. If a circular ray
path is assumed inside the GRIN material and small-angle
approximations are taken, the displacement of a beam in a
distant plane from its initial position is

∂n
∂y

≈
Δ
LD

; (4)

where D is the propagation distance from the sample exit
surface to the distant plane and L is the thickness of the sam-
ple. The measured deflection data over the sample, ΔðyÞ, can
then be integrated to arrive at the relative index distribution.
The assumptions and approximations made in this method
allow for the displacement of the beam to be measured in
one plane, rather than two planes, as required in the bootstrap
method to measure angular deflection of the beam. However,
the approximations in this method ultimately limit the accu-
racy of the measurement.

In order to improve the measurement accuracy of this
method, an iterative ray trace correction algorithm was devel-
oped using the result of Eq. (4) as a starting point. An error
metric is defined as the root-mean-squared (RMS) difference
between the measured deflection data and calculated deflec-
tion data using forward ray tracing through the GRIN sam-
ple, including free-space propagation to the observation
plane. The GRIN profile is parameterized such that an opti-
mization can be performed over the GRIN parameters to
minimize the error metric. Any appropriate parameterization
can be used, but cubic splines offer a practical and flexible
parameter space. The locations of the spline knots are opti-
mized until the resulting index profile produces ray trace
deflection data that are consistent with the measured data.
An inherent advantage of this type of approach is that addi-
tional sample parameters that affect measurement accuracy,
such as wedge and surface shape, can be accounted for in the
forward ray trace (so long as they can be measured.)

Plane 2

Plane 1 Rays carrying flux

Fig. 4 An ideal ray (dashed red) tracking the median of an optical
beam’s irradiance profile. Fig. 5 Deflectometry geometry in the ray displacement method.
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5 Experimental Measurement
The foregoing theoretical discussion suggests two GRIN
metrology techniques: a ray slope method using a bootstrap
algorithm (described in Sec. 2) and a ray position method
(described in Sec. 4) using an iterative correction algorithm.
The ray slope method, based on Eq. (3), requires beam posi-
tion and angle measurements at the input and output surfaces
of the GRIN sample. These quantities are obtained using a
relatively straightforward benchtop setup, illustrated in
Fig. 6. The position of the beam at the output surface of
the sample is extrapolated from beam position measurements
in two observation planes. In the ray position method, the
geometry is simpler, where the probe beam is normally inci-
dent and beam position is only measured in one observation
plane behind the GRIN sample (as seen in Fig. 5).

The calculated index profiles obtained from the two meas-
urement techniques described in the preceding sections, as
well as the discrepancy between them, are shown in Fig. 7.
The sample used was a polymer blend of polymethyl meth-
acrylate and polystyrene produced at the University of
Rochester with a thickness of 14.03 mm. The two calculated
profiles are in good agreement, but it cannot be determined
which of the two methods is more accurate since the actual
index profile of the sample is unknown. Given the uncer-
tainty in position measurements, it is possible to obtain an
error bound (as well as the expected error) for the calculated
index distribution. The error analysis for both methods is
deferred to a later section. The maximum discrepancy
between the index distributions calculated from both meth-
ods in this particular measurement is 1.5 × 10−3. This is

reasonable considering the uncertainty in position measure-
ments and a relatively short propagation distance (2.2 cm)
between the output face of the sample and the farthest obser-
vation plane. To improve measurement accuracy in the ray
slope method, the propagation distance between observation
plane 1 and the sample should be minimized while extending
the propagation distance to observation plane 2. Similarly,
increasing the propagation distance between the sample
and the observation plane will reduce error buildup in the
ray position method.

6 Intrinsic Error Analysis

6.1 Ray Position Method

The ray displacement method described in Sec. 4 uses first-
order small-angle approximations along with other simplify-
ing assumptions. When beam displacement inside the GRIN
sample becomes significant, these assumptions break down
and a substantial error can result in the calculated index. The
following analysis provides a second-order correction term
to the small-angle approximation and addresses finite beam
deflection taking place inside the sample. The difference
between the geometry of beam deflection and its approxi-
mated model is illustrated in Fig. 8.

Retaining the second-order terms in the small-angle
approximations, one finds that

ΔGRIN ¼ R½1 − cosðθ1Þ� ≈
n
∂n
∂y

1

2
θ21: (5)

Consequently, the first-order expression in Eq. (4)
becomes (following a similar derivation used in Ref. 5)

∂n
∂y

¼ Δtot

LDþ L2

2n

; (6)

where Δtot ¼ ΔGRIN þ Δext is the total beam displacement.
Equation (6) provides a more accurate description (second
order) of the index profile, especially in thicker samples or
where the index distributions contain significant gradients. A
forward ray trace (simulation) is performed for normally
incident beams propagating through a GRIN sample with
an index distribution shown in Fig. 9(a). The sample thick-
ness is 0.3 cm and the measurement plane is placed 0.5 cm
away from the output surface of the sample. These

Beam profilerGRIN 
sample

Probe beam

Observation 
plane 1

Observation 
plane 2

Fig. 6 Experimental setup for measuring 1-D gradient index (GRIN)
profiles using angled incidence.
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simulation parameters were chosen such that substantial
error in the index would result from approximations made
in the ray position method of Sec. 4. The improvement in
the computation error after applying Eq. (6) can be seen
in Fig. 9(b).

It is clear that even a second-order small-angle approxi-
mation will not suffice under these conditions. Fundamental
assumptions in the approximate model also break down
under similar circumstances. In particular, the actual ray tra-
jectory will deviate from the assumed circular arc under a
constant index gradient, as shown in Fig. 10. The circular
arc remains a relatively good approximation in thicker sam-
ples compared to the more commonly used parabolic ray
path in small-angle approximations. However, any assumed
ray path under a constant index gradient becomes problem-
atic in thick samples because the index gradient generally
does not remain constant across the ray path.

These intrinsic errors are corrected by the iterative ray
trace algorithm following the initial calculation from Eq. (6)
[in lieu of Eq. (4) for faster convergence]. The result is shown
in Fig. 11. The remaining error primarily originates from
quantization and parameterization effects in the forward
ray trace used to generate the beam deflection data and is
not a limitation to the accuracy that can be achieved by
the algorithm.

6.2 Ray Slope Method

A similar simulation is performed for the same GRIN profile
shown in Fig. 9(a) using the ray slope method. Beam deflec-
tion data are generated from a forward ray trace for probe
beams incident at θ ¼ π∕7 rad. The index calculated from
the bootstrap algorithm and the resulting error is shown in

(a) (b)

∆

1

2

∆
2

∆

1

Fig. 8 Difference between (a) beam deflection geometry and (b) first-order small-angle model.
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Fig. 9 (a) Index profile used in simulation to generate beam displacement data. (b) Intrinsic errors in index values resulting from first- and second-
order approximations. Simulation parameters are set to L ¼ 0.3 cm and D ¼ 0.5 cm.
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Fig. 12. We hasten to add this error does not represent a fun-
damental limit on the accuracy of the bootstrap algorithm.
Since no approximations were used in the derivation of
the fundamental relation in Eq. (3), any intrinsic (nonmea-
surement-based) error in the ray slope method is due simply
to the accuracy of the interpolator used in the bootstrap
algorithm.

7 Measurement Error Analysis
In this section, we examine the effects of measurement error
on both methods. Error propagation is of particular concern
since calculated index values are used in subsequent calcu-
lations in the bootstrap algorithm and integration over calcu-
lated gradients is used to find the index distribution in the ray
displacement method.

In order to quantify the accumulation of error from the
bootstrap process, sources of measurement error need to
be identified. Starting with the fundamental relation from
Eq. (3) and assuming the probe beams are traveling from
an unknown region at the input to a known region of the

sample at the output, the refractive index at the input can
be calculated as

nin ¼
�
n2out −

n2ambðy 0
outÞ2

1þ ðy 0
outÞ2

þ n2ambðy 0
inÞ2

1þ ðy 0
inÞ2

�1
2

; (7)

where the refractive index at the output, nout ¼ nðyoutÞ, is a
known (or calculated) quantity and the slopes, y 0

out and y 0
in,

are measured quantities. Differentiating nin with respect to
these quantities yields

∂nin
∂nout

¼ nout

�
n2out −

n2ambðy 0
outÞ2

1þ ðy 0
outÞ2

þ n2ambðy 0
inÞ2

1þ ðy 0
inÞ2

�−1
2

; (8)

∂nin
∂ðy 0

outÞ
¼

�
−

n2ambðy 0
outÞ

1þ 2ðy 0
outÞ2 þ ðy 0

outÞ4
�

×
�
n2out −

n2ambðy 0
outÞ2

1þ ðy 0
outÞ2

þ n2ambðy 0
inÞ2

1þ ðy 0
inÞ2

�−1
2

; (9)
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Fig. 11 (a) Index calculated from the ray displacement method using the iterative ray trace correction algorithm. The curves for actual and calcu-
lated results cannot be discerned from this plot. (b) The resulting error due to quantization effects in the simulation. Simulation parameters are
unchanged from Fig. 9.
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Fig. 12 (a) Index calculated from the ray slope method using the bootstrap algorithm. The curves for actual and calculated results cannot be
discerned from this plot. (b) The resulting error due to quantization effects in the simulation. Simulation parameters are set to L ¼ 0.3 cm and
a ¼ b ¼ 0.25 cm.
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∂nin
∂ðy 0

inÞ
¼

�
n2ambðy 0

inÞ
1þ 2ðy 0

inÞ2 þ ðy 0
inÞ4

�

×
�
n2out −

n2ambðy 0
outÞ2

1þ ðy 0
outÞ2

þ n2ambðy 0
inÞ2

1þ ðy 0
inÞ2

�−1
2

: (10)

The total error when calculating the index in the input
plane is therefore

dnin ¼
∂nin
∂nout

dnout þ
∂nin

∂ðy 0
outÞ

dðy 0
outÞ þ

∂nin
∂ðy 0

inÞ
dðy 0

inÞ: (11)

The geometry of the beam deflection measurement is
illustrated in Fig. 13. The angles in Eq. (11) are obtained
by measuring the beam position in two observation planes.
Computational error can result from uncertainty in the posi-
tion measurements of the probe beam in the observation
planes as well as uncertainty in the positions of the observa-
tion planes themselves.

Rewriting Eq. (11) in terms of the measured quantities a,
b, ya, and yb, the total accumulated error bound is given by
(see Appendix):

dnin ¼
�
−

∂nin
∂nout

∂n
∂y

�
1þ a

b

�
−

∂nin
∂ðy 0

outÞ
1

b

�
dya

þ
�
∂nin
∂nout

∂n
∂y

a
b
þ ∂nin

∂ðy 0
outÞ

1

b

�
dyb

þ ∂nin
∂nout

∂n
∂y

ðy 0
outÞda

þ
�
−

∂nin
∂nout

∂n
∂y

a
b
ðy 0

outÞ −
∂nin

∂ðy 0
outÞ

1

b
ðy 0

outÞ
�
db

þþ ∂nin
∂ðy 0

inÞ
dðy 0

inÞ þ
∂nin
∂nout

ðdninterp þ dn�inÞ; (12)

where dninterp is the interpolation error, dn�in accounts for the
accumulated error in the calculated index profile from pre-
vious bootstraps as well as error in the measured input beam
position (see Appendix), and partial derivatives involving
nout, y 0

in, and y 0
out are given by Eqs. (8)–(10). By iteratively

applying Eq. (12) N times, where N is the minimum number
of bootstraps required to calculate the entire index profile of
the sample, a bound on the accumulated error can be com-
puted for the bootstrap algorithm. The error compounds with
each bootstrap in the algorithm. If j ∂nin

∂nout
j ¼ 1, the accumu-

lated error bound will increase linearly with each bootstrap.
From Eq. (8), this condition is satisfied when jy 0

inj ¼ jy 0
outj

(always true in homogeneous samples). If jy 0
inj < jy 0

outj, it

is clear that j ∂nin
∂nout

j > 1 and the maximum accumulated
error increases exponentially per bootstrap. On the other
hand, if jy 0

inj > jy 0
outj, then j ∂nin

∂nout
j < 1 and the accumulated

error bound approaches an asymptote. One can take advan-
tage of this particular type of buildup behavior in computa-
tion error when measuring samples with a monotonic index
profile.

While systematic errors result from uncertainty in propa-
gation distances, a and b, uncertainty in position measure-
ments, ya and yb, need to be treated as random processes.
Using Eq. (12), the expected error resulting from these ran-
dom variables in the two observation planes is given by

Δn2in;rms ¼
���� − ∂nin

∂nout
∂n
∂y

�
1þ a

b

�
−

∂nin
∂ðy 0

outÞ
1

b

����
2

Δy2a;rms

þ
���� ∂nin∂nout

∂n
∂y

a
b
þ ∂nin

∂ðy 0
outÞ

1

b

����
2

Δy2b;rms

þ
���� ∂nin
∂ðy 0

inÞ
����
2

Δðy 0
inÞ2rms

þ
���� ∂nin∂nout

∂n
∂y

a
b
þ ∂nin

∂ðy 0
outÞ

1

b

����
2

Δy2b;rms

þ
���� ∂nin
∂ðy 0

inÞ
����
2

Δðy0
inÞ2rms

þ
���� ∂nin∂nout

����
2

ðΔn2interp;rms þ Δn�2in;rmsÞ: (13)

To verify our error analysis, a forward ray trace is com-
puted for a set of incident beams through a predetermined
GRIN profile. A constrained cubic spline fit is used to inter-
polate between known (or calculated) index values.
Therefore, noise from the interpolator is roughly fourth-
order in the separation between output ray positions and
can be neglected if a sufficiently large number of rays are
used. However, because the output ray positions and angles
are computed from a numerical ray trace and a discretized
index profile, quantization noise must be considered. This
noise term replaces the interpolation noise term in
Eq. (12). For the purposes of verifying the error bound in
Eq. (12), the bound on quantization noise in the calculated
index profile was characterized to be roughly 2 × 10−5

(before the error compounds) for the resolution used in
the simulation. Following the forward ray trace, position
measurements, ya and yb, in the observation planes are uni-
formly shifted by 1 μm to introduce a systematic error. A
similar perturbation can be achieved by changing propaga-
tion distances a and b in Fig. 13 after beam deflection data
have been obtained. The accumulated error in the bootstrap
algorithm due to this systematic error in output beam posi-
tions and angles is shown in Fig. 14(a). The results are in
good agreement with the error bound predicted by Eq. (12).
The discrepancy at larger y-values is because Eq. (12)
assumes the error in each bootstrap always reaches the pre-
dicted error bound. This is only true for the first couple
bootstraps in this particular simulation, as evident from
Fig. 14(a). If the errors are random variations in position
measurements, ya and yb, the accumulated error in the boot-
strap algorithm will typically resemble Fig. 14(b). Taking the
statistical average over a large number of realizations afterFig. 13 Deflectometry geometry in the ray slope method.

Optical Engineering 112108-7 November 2013/Vol. 52(11)

Lin et al.: One-dimensional gradient-index metrology based on ray slope measurements. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 02/24/2014 Terms of Use: http://spiedl.org/terms



adding normally distributed random noise with a standard
deviation of 1 μm to the position measurements, the expected
error conforms to Eq. (13), as shown in Fig. 14(c). The dis-
crepancy arises because partial derivatives and the index gra-
dient appearing in Eq. (13) are estimated in the bootstrap
process when the index distribution is still unknown.
Updating the accumulated error once per bootstrap in the
algorithm results in the apparent staircase behavior in all
three figures. In these simulations, multiple values of the
index are calculated per bootstrap.

Since no analytical expression exists for the error pro-
duced by the iterative algorithm when there is uncertainty
in spatial measurements, its performance is analyzed by add-
ing normally distributed random noise with a standard
deviation of 1 μm to the displacement data generated from
a forward ray trace. A large number of simulations are aver-
aged (RMS) to quantify the effect of these random errors. In
addition, systematic errors are simulated by adding a con-
stant 1-μm shift to all displacement data. The results of
the analysis are shown in Fig. 15. Because beam displace-
ment is a direct measure of the index gradient in the ray posi-
tion method, error buildup due to systematic errors is
expected to increase linearly with distance from the initially
known region of the sample.

Compared to the ray slope method where ray displace-
ment is measured in two planes to obtain slope data, the com-
putation error is smaller in the ray position method due to a

simpler measurement geometry. However, the numerical
integration involved in computing the index distribution
makes the displacement method more sensitive to the num-
ber of beams used in measuring the sample (since individual
measurements correspond to the index gradient in the vicin-
ity of the beam path), as well as the parameterization of the
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Fig. 14 (a) Accumulated error in the calculated index due to systematic errors in a single simulation. (b) Effect of random measurement errors in a
single simulation. (c) The accumulated error due to random measurement errors is averaged (root mean squared [RMS]) over a large number of
realizations (simulations) to determine the expected error. Simulation parameters are unchanged from Fig. 12.
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Fig. 15 Refractive index error in the ray trace correction algorithm due
to systematic errors and random errors in simulated beam displace-
ment data. Random errors are averaged (RMS) over a large number
of realizations (simulations) to calculate the expected error.
Simulation parameters are unchanged from Fig. 9.
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index profile for optimization. This also leads to error
buildup in the calculated index at locations far from the ini-
tially known region of the sample. In contrast, the ray slope
method is more robust in this regard; the error due to sparse
data points only depends on the quality of the interpolator
used in the bootstrap algorithm.

Redundancy in measured data provides one method of
reducing error buildup in both methods. As currently pre-
sented, both methods use a known index value at one end
of the sample as a starting point. With uncertainties in spatial
measurements, index values calculated farther away from the
known region generally contain more error. If the refractive
index is known at both ends of the sample (or, in general, at
multiple sample positions), the computation in both algo-
rithms can be repeated, without any additional measure-
ments, starting at these known points. Consistency among
the index distributions obtained from different starting loca-
tions can be enforced to improve accuracy and mitigate error
buildup in both algorithms.

Finally, it is worth mentioning that measurements from
the ray slope method provide enough information to engage
the previously described iterative ray trace algorithm after
obtaining an initial index distribution via the bootstrap algo-
rithm. However, much of the correction made in the ray trace
algorithm comes from intrinsic modeling errors of the ray
displacement method. Without measurement errors, the
ray trace algorithm would work primarily to increase the
interpolation accuracy of the bootstrap algorithm. If uncer-
tainties are present in the measurements, combining the two
algorithms would not necessarily lead to an improvement in
the calculated index distribution, as the errors generated by
the algorithms accumulate differently.

8 Conclusion
We have presented a new method for measuring 1-D index
profiles using angular ray deflection measurements and com-
pared it to an existing technique using ray position measure-
ments. The new method uses a fundamental relation between
input and output beam angles that follows directly from the
ray equation in geometric optics and contains no approxima-
tions (apart from those necessary for neglecting diffraction).
A bootstrap algorithm was introduced to compute the index
distribution based on ray angle (and position) measurements.
The accuracy of the existing ray position method was
enhanced significantly by utilizing an iterative ray trace algo-
rithm to correct for intrinsic errors incurred from using an
approximate beam displacement model. Both methods
were used to experimentally measure the index distribution
of a 1-D GRIN sample. The results showed good agreement,
with a maximum discrepancy of 1.5 × 10−3 in the calculated
index between the two methods. In addition, we obtained an
analytical expression for estimating error buildup in the boot-
strap algorithm applied to the ray angle approach and veri-
fied the expression with a computer simulation. In a typical
simulation, we expect the error buildup in the calculated
index to be <1 × 10−3 for the ray angle approach. We
have also simulated the effects of similar uncertainties in
measurement of the calculated index distribution for the
ray displacement method where an iterative ray trace algo-
rithm was used to correct for the intrinsic modeling errors.
Index of refraction measurements from both approaches

show similar precision when similar measurement geom-
etries and intrinsic measurement accuracies are assumed.
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Appendix
The deduction of Eq. (2) from Eq. (1) is as follows. The first
and second derivatives with respect to s in terms of Cartesian
coordinates x and y can be written as

d
ds

¼ d
dx

dx
ds

¼ d
dx

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p ¼ d
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dy
dx

�
2

r ;

d2

ds2
¼ d2

dx2
1

1þ
�
dy
dx

�
2

using the fact that ds2 ¼ dx2 þ dy2. In scalar form, Eq. (1)
can be rewritten as

dn
dx

�
dx
ds

�
2

¼ ∂n
∂x

dn
dx

dx
ds

dy
ds

þ n
d2y
dx2

1

1þ
�
dy
dx

�
2
¼ ∂n

∂y
:

Since the index only varies along y, dn
dx ¼ 0 and the expres-

sions above are reduced to

n
d2y
dx2

1

1þ
�
dy
dx

�
2
¼ ∂n

∂y
:

Multiplying both sides by dy
dx and rearranging yields

d
n
ln
h
1þ

�
dy
dx

�
2
io

dx
¼ d½2 lnðnÞ�

dx
.

Integrating and applying the appropriate boundary condition
produces the fundamental relation in Eq. (2).

Equation (12) can be deduced from Eq. (11) using the
measured quantities shown in Fig. 13. The error in the cal-
culated output slope is given by

dðy 0
outÞ ¼

1

b
ðdyb − dya − y 0

outdbÞ:

The error in position measurements produces an error in
the known index at the output as a result of an uncertainty in
the extrapolated output position yout,

dnout ¼
∂n
∂y

dyout;
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where ∂n
∂y is the gradient of the index profile at yout and the

error in the extrapolated output position of the beam is given
by

dyout ¼
�
1þ a

b

�
dya −

a
b
dyb − y 0

outdaþ a
b
y 0
outdb:

In the bootstrap algorithm, indices at the output are inter-
polated from previously calculated values. If the index at the
output does not reside in the initially known region of the
sample and was obtained from Eq. (3), then the total error
in the calculated index at the output must account for inter-
polation error as well as any computation error carried over
from previous calculations.

dnout ¼
∂n
∂y

dyout þ dninterp þ dn�in;

where dninterp is the interpolation error and dn�in is the accu-
mulated error in the GRIN profile from previous bootstraps
with an additional term that accounts for spatial measure-
ment errors in the input plane.

dn�in ¼ dnin;prev −
∂n
∂y

dyin;prev:

Substituting the above expressions into Eq. (11) and
rearranging yields the expression in Eq. (12). In Eq. (13),
the accumulated RMS error appears in the form

Δn�2in;rms ¼ Δn2in;rms;prev þ
���� ∂n∂y

����
2

Δy2in;rms:
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