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ABSTRACT 

We present a method for calculating a two-dimensional refractive index field from measured boundary values of beam 
position and slope. By initially ignoring the dependence of beam trajectories on the index field and using cubic 
polynomials to approximate these trajectories, we show that the inverse problem can be reduced to set of linear algebraic 
equations and solved using a numerical algorithm suited for inverting sparse, ill-conditioned linear systems. The beam 
trajectories are subsequently corrected using an iterative ray trace procedure so that they are consistent with the ray 
equation inside the calculated index field. We demonstrate the efficacy of our method through computer simulation, 
where a hypothetical test index field is reconstructed on a 15 × 15 discrete grid using 800 interrogating rays and 
refractive index errors (RMS) less than 0.5% of the total index range (݊௠௔௫ − ݊௠௜௡) are achieved. In the subsequent 
error analysis, we identify three primary sources of error contributing to the reconstruction of the index field and assess 
the importance of data redundancy. The principles developed in our approach are fully extendable to three-dimensional 
index fields as well as more complex geometries. 
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1. INTRODUCTION 

The subject of gradient-index (GRIN) optics pertains to the study of inhomogeneous optical media whose refractive 
index varies with position and dates back to the 1850s. For many years, the manufacturing capabilities of GRIN 
materials have been the primary limiting factor to successfully implementing GRIN elements in integrated optical 
systems. However, there are now many different material systems (primarily glasses and plastics) in which gradients in 
the refractive index can be made. Myriad techniques have been studied for fabricating increasingly complex index 
variations1,2. Current methods for fabricating GRIN materials include neutron irradiation3, chemical vapor deposition 
(CVD)4, ion exchange5,6, ion stuffing7, and variations of polymer-based processes8-10. The underlying physical principles 
behind these fabrication methods have always limited their ability to produce arbitrary index profiles. Specifically, these 
limitations include: (1) The physical depth into which the material’s refractive index can be changed; (2) the maximum 
change that can be achieved in the refractive index; and (3) the types of refractive index variations that can be 
manufactured. However, several new methods have been developed that permit unprecedented control over the index 
profile in two and three dimensions11. Given the various technological advances in GRIN fabrication techniques we have 
just listed, it is reasonable to speculate that arbitrary index distributions in GRIN optical components may be realizable 
in the near future. 

In response to these technological advances in GRIN fabrication over the last three decades, there has been increasing 
interest in exploring novel GRIN materials to develop compact, lightweight and robust optics. GRIN optics offer 
appealing form factors as well as additional degrees of freedom in controlling the propagation of light and have found 
application in telecommunications and compact imaging. In the former application, a refractive index profile that varies 
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radially from the center of an optical fiber can be chosen properly so that the rays that transit the fiber are guided by 
refraction, rather than by total internal reflection (e.g., in step-index optical fibers). In addition, GRIN fibers can be 
designed so that all modes propagate with the same velocity, reducing modal dispersion and thereby increasing the 
bandwidth and the repeater distance of optical communication systems1. Furthermore, the cylindrical form factor of 
GRIN optics simplifies coupling between optical fibers and sources. It follows that the optical power of lenses is not 
only determined by their surface geometry but also by their refractive index distribution. By combining the two effects, 
new approaches to chromatic as well as spherical aberration correction become possible12,13. In addition, GRIN optics 
can be designed to redistribute irradiance in an optical beam and perform coherent mode conversion in beam shaping 
applications14-16. 

Since the refractive index of the GRIN element dictates the propagation of light inside the optical material, accurate 
knowledge of its index distribution is essential for integration into optical systems. Many methods for measuring one-
dimensional (1-D) GRIN profiles have been described in the literature over the years and have found application in the 
study of diffusion properties of particles in liquids and gases outside the realm of GRIN optics. These include prism 
methods17,18, moiré patterns19,20, deflectometry methods based on either beam displacement21,22 or deflection in beam 
angle23, as well as interferometric methods24-27. In the case of two-dimensional (2-D) GRIN profiles, analytical solutions 
for deflectometry measurements have been shown for specific geometries, such as radially symmetric index profiles of 
optical fiber preforms28. In cases where symmetry cannot be exploited to reconstruct the index field, straight ray 
trajectories assumed in tomographic approaches enable the use of the projection slice theorem in the Fourier synthesis of 
the index field from interferometric data29. Furthermore, deflectometry principles have also been demonstrated in 
interrogating 2-D index fields using x-rays, where the index of materials is close to unity for the chosen wavelength30,31. 
However, reconstruction accuracy in these methods is quickly compromised under even a modest refracting index field 
where ray trajectories are seldom linear. In addition, the effects of Snell’s law at the discontinuities along interfaces are 
either assumed to be negligible or not addressed at all in these methods. In contrast, our method of inversion is applicable 
to measurements performed at visible wavelengths (or any wavelength, in general); it allows for curved ray trajectories 
under steep index gradients and accounts for Snell’s law along the boundary interface. As far as we know, there has been 
no reported method of directly inverting deflectometry measurements in reconstructing arbitrary 2-D index fields that 
offer these capabilities. 
 

2. THE INVERSE PROBLEM 

2.1  Linear system formulation 

We will first develop the mathematical model upon which our method is based from the (simpler) context of 
interferometric measurements. Let us suppose that the index field in question, ݊ሺݔ,  ሻ, can be represented on a uniformݕ
rectangular grid of discrete sample points, as shown in Fig. 1, where the integers ݈ and ݇ are discrete indices 
corresponding to the spatial variables ݔ and ݕ, respectively. In this discrete representation, we treat the sample values ݊௟,௞ as the system’s unknown quantities, which we will use synonymously with its degrees of freedom (DoFs). Of 
course, a sufficient number of sample points are required in representing ݊ሺݔ,  ሻ to avoid loss of information in theݕ
discrete representation of any continuous field quantity. Assuming that ݊ሺݔ,  ሻ is band-limited, the minimum number ofݕ
sample points is associated with its space-bandwidth product32. 

For the sake of simplicity, let us assume that ݊ሺݔ,  ሻ is constant within each rectangular region and that its value is equalݕ
to the sample value ݊௟,௞ located at its center, as shown in the figure. Next, suppose that we measure the absolute optical 
path length traveled by a probe laser beam that transits ݊ሺݔ,  ሻ. Such a measurement can be described by a path integralݕ
of ݊ሺݔ,  ሻ in terms of the sampled values ݊௟,௞ inside the index field. In the analog domain, the path integral can beݕ
written as 
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߮ = ׬ ݏ݀ ∙ ݊ሺݔ, ሻ௕௔ݕ   ,  (1) 

where ݀ݏ is the differential arc length and ܽ and ܾ are the end-points for the path traveled by the probe beam. Switching 
to a discrete representation under our crude approximation, the path integral can be expressed as the Riemann sum ߮ = ∑ ∑ ௟,௞݊௟,௞௞௟ݏ݀   ,   (2) 

where ݀ݏ௟,௞ is the arc length of the path segment contained within the rectangular region corresponding to ݊௟,௞. If the 
path of the integral is known, then ݀ݏ௟,௞ is fully specified and Eq. (2) qualifies as a linear expression in ݊௟,௞. 

 
 

 

 

 

 

 

 

 
Fig. 1. Discrete representation of a continuous field quantity on a uniform rectangular grid, where values of the field are 
assumed to be constant within each rectangular region under a crude approximation. 

2.2  Extension to deflectometry 

Assuming diffraction of the probe laser beam to be negligible, the ray equation of geometrical optics33 governs its 
propagation inside the index field ݊: 

ௗௗ௦ ቀ݊ ௗ௥റௗ௦ቁ = 	∇݊  ,   (3) 

where ݀ݏ is the arc length along the ray trajectory, and ݎറ is the position of a point on the trajectory. Using small angle 
approximations, it is straight-forward to show from Eq. (3) that the normal component of the local index gradient induces 
a change in the ray’s direction and that the overall angular deflection of an interrogation ray can be expressed as a path 
integral of the partial derivatives of the index field: ∆ߠ = ׬ ݏ݀ ∙ ݓ∇ ∙ ௕௔ݐ̂ = ׬ ݏ݀ ∙ ቂ−݊݅ݏሺߠሻ డ௪డ௫ + ሻߠሺݏ݋ܿ డ௪డ௬ቃ௕௔   , (4) 

where ̂ݐ = ሻଓ̂ߠሺ݊݅ݏ− + ݓ∇ ሻଔ̂ denotes the normal unit vector to the beam’s trajectory andߠሺݏ݋ܿ = డ௪డ௫ ଓ̂ + డ௪డ௬ ଔ̂ is the 

gradient of the logarithmic index field ݓ = lnሺ݊ሻ. We illustrate the geometry of the deflectometry path integral in Fig. 2. 

Sampling the partial derivatives డ௪డ௫  and డ௪డ௬  on the same rectangular grid as ݊௟,௞ and using the crude approximation from 

Sec. 2.1, Eq. (4) can be rewritten as the Riemann sum 

݂ሺݔ, ሻݕ

݈ = 1, ݇ = 1

Sample points ௟݂,௞

ݔ

	ݕ
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ߠ∆ = ∑ ∑ ௟,௞ݓ∇௟,௞ݏ݀ ∙ ො݊௟,௞௞௟   ,  (5) 

where ݀ݏ௟,௞ is the arc length of the path segment contained within the rectangular region associated with sample values 
for the index gradient vector ∇ݓ௟,௞ and ̂ݐ௟௞ is taken to be the mean normal unit vector for this ray segment.. As before, we 
assume ∇ݓ௟,௞ to be constant within each rectangular region. Once again, we assume that the path of the integral is given 

so that ݀ݏ௟,௞ and ̂ݐ௟௞ are fully specified in the expression and Eq. (5) remains linear in ∇ݓ௟,௞.  Because డ௪డ௫  and డ௪డ௬  are the 

partial derivatives of the underlying potential function ݓ, they must satisfy ∇ × ݓ∇ = డడ௬ డ௪డ௫ − డడ௫ డ௪డ௬ = 0  . (6) 

The vanishing curl in Eq. (6) ensures that ݓሺݔ,  with non-zero curl is ݓ∇ ሻ is single-valued; any gradient fieldݕ
unphysical. In terms of the discrete values ∇ݓ௟,௞, Eq. (6) can be discretized as 

൬డ௪డ௫ቚ௟,௞ାଵ − డ௪డ௫ቚ௟,௞൰ − ൬డ௪డ௬ቚ௟ାଵ,௞ − డ௪డ௬ቚ௟,௞൰ = 0  (7) 

and applies to all sampling grid points. 

 

 

 

 

 

Fig. 2. Geometry of physical quantities used to describe the deflection of a probe laser beam propagating through a 2-D 
index field. 

2.3  The system equation 

Suppose that a set of probe laser beams are used to interrogate the index field in question and the boundary values of 
slope and position are reported for each beam. If we derive an expression for the path integral in Eq. (5) without 
knowledge of the laser beams’ trajectories inside the index field, Eq. (5) becomes nonlinear in ∇ݓ௟,௞ because both ݀ݏ௟,௞ 
and ̂ݐ௟௞ in the expression are functions of ∇ݓ௟,௞ according to Eq. (3). In order to linearize the system, we propose to 
ignore the dependence of the laser beams’ trajectories on the index field (and its gradient) and generate approximate 
trajectories based on the measured boundary values. Although the approximated trajectories are initially unphysical, we 
intend to use a corrective ray trace procedure to obtain trajectories that are consistent with Eq. (3) after obtaining an 
initial reconstruction of the index field. 

Assimilating the Riemann sums from Eq. (5) and the irrotational constraints from Eq. (7) into a set of simultaneous 
linear algebraic equations results in the system equation ሾܵሿ ∙ δሬറ = ሬܲറ  . (8) 

,ݔሺݓ∇ ሻݕ = ݔ߲ݓ߲ ଓ̂ + ݕ߲ݓ߲ ଔ̂
ܽ	 ݏ݀ ܾො݊ ߠ
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where the unknown vector δሬറ now contains sample vector components of ∇ݓ௟,௞, half of which describes డ௪డ௫ቚ௟,௞ and the 

other half specifies డ௪డ௬ቚ௟,௞. Assuming we have ܰ total measured probe beams, the first ܰ rows of ሾܵሿ each contain 

lexicographically ordered (or raster scanned) coefficients associated with each of the unknown sample values in δሬറ. 
Accordingly, the first ܰ values in ሬܲറ correspond to total angular deflection values for the respective probe beams. The 
remaining rows of ሾܵሿ correspond to the irrotational constraints in the form of Eq. (7) and the respective values in ሬܲറ are 
set to zero. Assuming ܰ is sufficient such that ሾܵሿ is a full-rank matrix, ሾܵሿ can, in principle, be inverted to solve for δሬറ, or 
equivalently, the gradient vector field ∇ݓ௟,௞. Upon integrating ∇ݓ௟,௞, the index field is specified up to an unknown 
constant, which can be determined by a single independent measurement of the refractive index, e.g., along the 
boundary. Following the initial reconstruction of the index field, a ray trace is performed for each probe beam using the 
measured boundary values. The traced trajectories are then used to refine the approximate trajectories so that a new 
system equation can be generated (and subsequently inverted) to obtain a more accurate reconstruction. We repeat this 
process until the beam trajectories and the reconstructed index field are consistent with Eq. (3). 
 

3. NUMERICAL IMPLEMENTATION 

3.1  Generating deflectometry data 

We began with the test index field shown in Fig. 3(a). To interrogate the medium, we applied probe beams to entry 
points uniformly distributed across the left and top boundary of the rectangular index field and used a numerical ray 
trace34 to generate boundary values for position and external slope for all probe laser beams. The interrogating set of 
probe beams connect all possible pairings of entry and exit points that reside on opposite boundaries of the index field, 
which we illustrate for a single entry point in Fig. 3(b). Probe beams that could not be measured in the ambient medium 
due to total internal reflection were discarded from the simulated data. 

 ሺܽሻ            ሺܾሻ 
Fig. 3. (ܽ) Test index field used to generate boundary values of beam position and slope and (ܾ) sample probe laser beams 
applied to a single entry point along the left boundary, connecting the entry point to all possible exit points. 

Our simulated data consisted of boundary measurements for 800 interrogating probe beams, 400 of which propagate 
strictly between the left and right boundaries of the test index field and the other 400 between the top and bottom 
boundaries. The boundary beam locations and external slopes, as well as the index of refraction along the boundary 
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(which can be measured in practice by a refractometer, for instance), were subsequently used as input data for our 
recovery algorithm. 

3.2  Recovering the index field 

Using the boundary values of the test index field, we applied Snell’s law to the generated external slope data to obtain 
corresponding internal slope values. We then constructed cubic polynomials from the boundary values of beam location 
and internal slope to approximate the trajectories for the probe beams inside the index field. From these trajectories, we 
used constrained cubic spline interpolation to derive a set of algebraic equations representing the deflectometry path 
integral in Eq. (4) corresponding to each probe beam. The resulting expressions were considerably more complex than 
the crude approximations used in Sec. 2.2 but were necessary to mitigate the quantization effects introduced into our 
deflectometry model. Augmenting these algebraic equations with the discrete irrotational constraints in Eq. (11), we 
arrive at a deflectometry system equation in the form of Eq. (8). 

In principle, computing the inverse or the pseudo-inverse of the deflectometry system matrix ሾܵሿ will allow us to solve 
for the partial derivative fields (contained in δሬറ) from the data vector ሬܲറ. However, the similarity in coefficients generated 
by path integrals for similar probe beams makes ሾܵሿ inherently ill-conditioned. Furthermore, ሾܵሿ is sparse because only a 
small set of grid points pertain to individual path integrals. To address these numerical issues, we employed the method 
of least squares QR factorization (LSQR) to solve for δሬറ, an iterative inversion technique that has been shown to produce 
reliable results in inverting sparse and ill-conditioned linear systems35. The resulting gradient field ∇ݓ௟,௞ obtained from 
the inversion is depicted in Fig. 4(ܽ), which was subsequently integrated to reconstruct the index field shown in Fig. 
4(ܾ), where the integration constant was determined from known boundary index values. 

 ሺܽሻ            ሺܾሻ 
Fig. 4. (ܽ) Index gradient field obtained from system inversion and (ܾ) reconstructed index field after integrating ∇ݓ௟,௞. 

After redefining the test index field in Fig. 3(ܽ) on the same sampling grid, the resulting RMS error in the reconstruction 
was 7.67 × 10ିସ refractive index units, less than 0.5% of the total index range (݊௠௔௫ − ݊௠௜௡). We note that the errors 
are particularly high in the corner regions of the index field due to the reduced quality of interpolation near the 
boundaries, resulting in a poor representation of the associated sample points in the discretized deflectometry path 
integrals. 
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3.3  Correcting ray trajectories 

The beam trajectories inside the medium must obey Eq. (3) for the solution to be consistent with geometrical optics. For 
this reason, we employed an iterative ray trace procedure to successively refine the beam trajectories. Using the 
reconstruction in Fig. 4(ܾ) as a starting point, two separate ray traces were performed for each probe beam in the data set. 
In one instance, we launched the ray with initial conditions associated with its entry point and traced the ray to its exit 
point; in the other, the ray was launched in reverse with the initial conditions associated with the exit point and was 
traced to its entry point in similar fashion. A weighted sum of the traced trajectories from both instances was then used to 
update our tentative approximation to the ray’s trajectory in order to ensure that the boundary conditions were not 
violated in the refined approximation, where the weighting coefficient started at unity at the launch point of the ray trace 
and decayed to zero as the trace approaches its exit point. The set of refined beam trajectories was then used to 
recalculate the path integral coefficients in ሾܵሿ and a more accurate reconstruction of the index field could be obtained by 
inverting the new system equation. We continued to improve our reconstructions in this manner until agreement was 
achieved between the ray trace trajectories and the approximate beam trajectories used to obtain the solution. 

In order to quantify the inconsistencies in the solution and monitor convergence of the algorithm, it is useful to define an 
error metric between the assumed trajectories and the traced trajectories; a natural choice is the integrated absolute 
difference between the two, i.e., ∆	= ׬ ሻݔ௧௥௔௖௘ሺݕ| − ௕௔ݔ݀|ሻݔ௜௡௜௧௜௔௟ሺݕ   ,  (9) 

where ݕ௧௥௔௖௘ሺݔሻ is the trajectory obtained from tracing through the computed solution from tracing a ray launched at the 
entry point of the interrogating ray with the appropriate initial conditions and ݕ௜௡௜௧௜௔௟ሺݔሻ is the approximation used for 
trajectory in the computation of ሾܵሿ prior to system inversion during each iteration of the algorithm. Using our corrective 
procedure to obtain the beam trajectories inside the index field, we were able to achieve a sufficiently consistent solution 
after just three successive system inversions. The error metric in Eq. (9) for each probe beam in the data set is shown in 
Fig. 5, where the probe beams have been sorted in ascending order based on their error metrics in order to prevent 
coincidental patterns from developing in the plot. 

 
Fig. 5. Progressive improvement in the error metrics evaluated for individual probe beams in the data set after three 
iterations of refining their trajectories. 

The RMS index error for the reconstruction resulting from our corrective procedure did not show a discernible 
improvement relative to the reconstruction in Fig. 4(ܾ). This suggests that the inversion process is relatively insensitive 
to small variations in the trajectories associated with individual probe beams. It stands to reason that the coefficients in 
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ሾܵሿ remain relatively static when these trajectories are perturbed, at least in the case of slowly varying index fields. 
Hence, the discrepancies between approximate beam trajectories and those obtained from a ray trace through the actual 
index distribution are expected to be extremely small. 
 

4. ERROR ANALYSIS 
 

4.1  Quantization error 

Much of the reconstruction error observed in Sec. 3 can be attributed to quantization effects. Because the deflectometry 
data was generated from a numerical ray trace, quantization effects associated with this process introduce random noise 
to the calculated boundary values of beam location and slope. We took additional measures to reduce this noise source, 
such as using a higher resolution grid for the test index field during the initial trace and optimizing the step size in 
Euler’s method in implementing the ray trace. Of course, these quantization effects are not present in an actual 
experiment and the error in the deflectometry data is entirely dictated by measurement accuracy. 

Aside from the noise present in the deflectometry data, additional quantization noise is introduced in the discretization of 
the deflectometry path integral associated with each probe beam. This contribution depends on the quality of 
interpolation used in obtaining the quantities involved in the path integral, namely, ݀ݏ௟,௞ and ො݊௟,௞ in Eq. (5) under the 
crude approximation used in Sec. 2, and acts independently of measurement error. Moreover, the numerical integration 
technique used to discretize Eq. (4) also plays a role. In principle, one can always increase the resolution of the sampling 
grid to mitigate this source of quantization noise. However, doing so increases the number of unknowns in the system 
and degrades the numerical conditioning of ሾܵሿ for the same set of deflectometry data. 

4.2  Measurement error 

In order to study the impact of measurement error on the reconstructed index field, we introduced white Gaussian noise 
to the generated deflectometry data (on top of the base-line quantization noise present in the numerical ray trace) prior to 
system inversion. As a preliminary test, we calculated ሾܵሿ in the deflectometry system equation based on approximate 
beam trajectories that fit the noise-free deflectometry data. The deflection values in ሬܲറ were subsequently contaminated 
with artificial Gaussian noise while the coefficients in ሾܵሿ were held constant. All other simulation parameters were 
unchanged from the reconstruction in Fig. 4(ܾ). This test allowed us to quantify the base-line inversion sensitivity of the 
linear system to measurement noise. The result in Fig. 6(ܽ) shows that the RMS index error in the reconstruction 
increased linearly with the noise level, as one would expect from the direct inversion of any linear system. A separate 
test is included in the figure and shows the reduction in sensitivity to measurement error through the use of redundant 
data, where the number of probe beams used to interrogate the index field was increased to 2450. 

In a more realistic model, the coefficients in ሾܵሿ must reflect the changes in the contaminated boundary values as they are 
generated from approximate trajectories that change with the measured boundary conditions. A subsequent test 
incorporating changes to both ሾܵሿ and ሬܲറ as a result of the contaminated boundary slope values is shown in Fig. 6(ܾ) and 
revealed the dependence of system’s sensitivity to noise level to be super-linear. This super-linear contribution is due to 
the path dependence of the coefficients in ሾܵሿ and becomes negligible for low noise levels. Thus, the overall 
reconstruction error can be attributed to three primary sources: for extremely small errors in measurement, quantization 
noise becomes the major contributor; at moderate noise levels, the base-line sensitivity in inverting a linear system is 
dominant while the super-linear contribution from the path dependence of ሾܵሿ becomes significant for higher noise 
levels. 
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 ሺܽሻ            ሺܾሻ 
Fig. 6. Index error resulting from contaminated boundary slope values where (ܽ) system coefficients are calculated from 
noise-free data and (ܾ) system coefficients are recalculated based on the contaminated values. 

 

5. CONCLUSION 

We have demonstrated a method for measuring 2-D index fields in rectangular GRIN elements using the boundary 
values of position and slope for a set of probe laser beams used to interrogate the medium. Using a simplifying 
assumption that decouples the trajectories of probe beams from the index field, we formulated a linear system description 
of the inverse problem and developed a mathematical model assuming knowledge of the boundary index values, which 
were used to obtain the internal boundary slopes for each probe beam. In our model, the beam trajectories were instead 
approximated from the internal boundary values so that each deflectometry path integral could be expressed as a linear 
combination of the system’s unknowns, i.e., the Cartesian vector components of the index gradient field sampled on a 
uniform rectangular grid. We solved for these unknowns using a numerical technique suited for inverting sparse and ill-
conditioned linear systems. Upon integrating the resulting gradient vector field, we were able to reconstruct the index 
field to within an arbitrary constant, which was determined through knowledge of the index along the boundaries. Using 
this approach, we were able to reconstruct a 2-D test index field from deflectometry data generated from a numerical ray 
trace and achieve RMS index errors below 0.5% of the index range. Taking advantage of the deflectometry system’s 
resilience to slight variations in the ray trajectories, we developed an iterative ray trace procedure to improve the 
approximated trajectories and refine the mathematical description of the system. The end result enforces the dependence 
of beam trajectories on the index field so that the optimized solution is consistent with the ray equation of geometrical 
optics.  

In order to assess the sensitivity of reconstruction process to measurement error, we introduced artificial Gaussian noise 
to the simulated deflectometry data and observed three regimes in the noise level where a particular error mechanism 
was dominant in contributing to the reconstruction error. The primary error mechanisms include quantization noise, 
base-line inversion sensitivity and trajectory dependence. We hasten to add that the rectangular geometry of the test 
index field was chosen to demonstrate our inversion procedure, and the method can be readily adapted to more complex 
geometries. In addition, the measurement principles can be extended to three-dimensional index distributions. In the 
future, we plan on exploring methods of reconstructing the index field directly from external beam slopes without 
knowledge of the boundary index values. 
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