
Channel density and efficiency optimization of
spectral beam combining systems based on
volume Bragg gratings in sequential and
multiplexed arrangements
G. B. INGERSOLL* AND J. R. LEGER

Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. SE, Minneapolis, Minnesota 55455, USA
*Corresponding author: gbingersoll@gmail.com

Received 10 March 2015; revised 25 May 2015; accepted 16 June 2015; posted 17 June 2015 (Doc. ID 235928); published 6 July 2015

Spectral-beam-combining (SBC) systems utilizing multiple volume Bragg gratings must be carefully analyzed to
maximize channel density and efficiency, and thus output radiance. This analysis grows increasingly difficult as
the number of channels in the system increases, and heuristic optimization techniques are useful tools for ex-
ploring the limits of these systems. We explore three classes of multigrating SBC systems: cascaded, where each
grating adds a new channel to the system in sequence; sandwiched, where several individual gratings are placed
together and all channels enter the system at the same facet; and multiplexed, where all of the gratings occupy the
same holographic optical element (HOE). Loss mechanisms differ among these three basic classes, and our opti-
mization algorithm shows that the highest channel density for a given minimum efficiency and fixed operating
bandwidth is achieved for a cascaded grating system. The multiplexed grating system exhibits the lowest channel
density under the same constraints but has the distinct advantage of being realized by a single HOE. For a par-
ticular application, one must weigh channel density and efficiency versus system complexity when choosing
among these basic classes of SBC systems. Additionally, one may need to consider the effects of finite-width input
beams. As input beam radius is reduced, angular clipping effects begin to dominate over spectral interference and
crosstalk effects, limiting all three classes of SBC systems in a similar manner. © 2015 Optical Society of America

OCIS codes: (090.7330) Volume gratings; (090.6186) Spectral holography; (230.1950) Diffraction gratings.
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1. INTRODUCTION

Spectral beam combining (SBC) systems are used to generate
high laser radiance from several lower-radiance sources.
Unlike coherent beam combining systems, the input sources
for an SBC system all operate at different wavelengths, so the
higher power at the output comes at the expense of a wider out-
put bandwidth. However, SBC systems can be simpler to realize
as they are not subject to constraints on the relative phases of the
sources [1].

The literature proposes several architectures for SBC systems
involving various fundamental optical components. The
dispersion from aprism or from surface-relief diffraction gratings
is often employed (in reverse) to combine several channels of
different wavelengths [2–5]. However, one drawback of these
systems is that they tightly couple the positions and wavelengths
of the sources through the well-known grating equation.

Coupling between source position and wavelength can be
removed by utilizing volume holograms, where an individual

volume Bragg grating (VBG) is used for each spectrally distinct
source. Systems which only combine two beams often use a
single transmission-mode VBG which diffracts one of the
beams while the other passes through undiffracted [6].
Those combining more than two beams often utilize several
individual reflection-mode VBGs which are organized sequen-
tially such that another input source is added to an intermediate
beam at each stage [7,8]. Finally, there are SBC systems—and
analogous wavelength division multiplexing systems [9]—that
employ a separate transmission-mode VBG for each input
channel but multiplex these gratings in a single holographic
optical element (HOE). This last system has obvious practical
advantages because only a single optical element is required and
alignment is simplified.

A goal of many SBC systems is to increase output radiance
in a manner that minimizes increases in output bandwidth.
Equivalently, the goal is to increase the number of input chan-
nels operating within a fixed output bandwidth. Channel den-
sity cannot be increased without limit, of course, due primarily
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to crosstalk effects among channels. In this work, we compare
the relative merits and limitations of sequential grating and
multiplexed grating transmission-mode VBG systems. We first
explore the differing design constraints and loss mechanisms
between these system types. We then introduce an optimiza-
tion heuristic that reveals regions of the design space which
provide the highest channel densities for planewave and
finite-beam inputs.

2. VOLUME GRATINGS IN SBC SYSTEMS

We explored three classes of SBC systems based on volume
Bragg gratings. The first two utilize gratings in sequential
arrangements, whereas the third class of system utilizes a single
HOE composed of multiplexed gratings.

We have termed the first type of sequential grating system a
cascaded system. A notional schematic of a three-channel cas-
caded grating system is shown in Fig. 1. In this system, inputs
A, B, and C operate at different wavelengths and are combined
into output D. At each stage, a separate HOE is used to add the
input channel to the intermediate beam. In the ideal case, input
A passes through both gratings unchanged, input B is diffracted
by the first grating with 100% efficiency and passes through the
second grating unchanged, and input C is diffracted by the
second grating without loss.

It is notable that while Fig. 1 depicts a transmission-mode
system and we only consider transmission-mode systems here,
many sequential systems utilize reflection-mode gratings to
achieve a nearly flat passband in terms of angular detuning from
the Bragg condition (see, e.g., [10]). This improves perfor-
mance when nonplanewave inputs are used. We explore finite
beam inputs further in Section 3.B.

A disadvantage of the cascaded arrangement is the physical
size required to allow input beams to enter the system between
the HOEs. If we eliminate this space, we arrive at the sand-
wiched grating arrangement depicted in Fig. 2. Again, in
the ideal case, a particular input would be diffracted strongly
by one grating and unaffected by the other gratings. The ex-
ception is, of course, input A—the “through-beam”—which is
ideally not affected by any grating. In contrast to the cascaded
arrangement, though, here all inputs pass through all of the

HOEs, increasing opportunities for loss due to spurious diffrac-
tion in the nonideal case.

Finally, the multiplexed grating system is shown in Fig. 3.
Here each of the sinusoidal index of refraction patterns typical
of volume phase gratings are present simultaneously in the
same HOE.

A. Single VBG System
The simplest case of an SBC system based on volume Bragg
gratings is a two-channel system utilizing one grating. This
is, in fact, a degenerate case of the three system classes previ-
ously introduced. If we assume planewave inputs linearly po-
larized perpendicular to the plane of incidence, the diffraction
efficiency of the single grating as a function of wavelength can
be calculated using Kogelnik’s well-known coupled-wave
method [11]. This appears as shown in Fig. 4 for the two chan-
nels’ input angles where we assume a material thickness of
d � 0.5 mm, a common output angle for the system of
θcom � θA � 0°, an input angle for input B of θB � 40°,
and an index modulation for the grating such that 100%
diffraction efficiency is achieved for input B.

Conceptually, to achieve 100% efficiency for the single-
grating, two-channel system with planewave inputs, one simply
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D

Fig. 1. Three-channel transmission-mode cascaded grating SBC
system utilizing two single-grating HOEs. Inputs A, B, and C operate
at different wavelengths and enter the system at angles θA, θB , and θC ,
respectively. These inputs are combined into output D, which leaves
the system at angle θcom � θA.

D
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C
Fig. 2. Three-channel transmission-mode sandwiched grating SBC
system utilizing two single-grating HOEs. Inputs A, B, and C operate
at different wavelengths and are combined into output D. Ideally, in-
put A is not diffracted by either grating, input B is strongly diffracted
by the first grating and not diffracted by the second, and input C is
strongly diffracted by the second grating and not diffracted by the first.
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Fig. 3. Ideal three-channel transmission-mode multiplexed grating
SBC system utilizing a dual-grating HOE. Inputs A, B, and C operate
at different wavelengths and are combined into output D. Ideally,
input A is not diffracted by either grating and inputs B and C are each
strongly diffracted by one of the multiplexed gratings but not the
other.
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sets the wavelength for input A, λA, to one of the zeros of the
diffraction efficiency curve when calculated for an input angle
of θA (e.g., λA ≈ 1039 nm). In this manner, the minimum out-
put bandwidth achievable in this two-channel system is depen-
dent on the parameters that define the grating. In general,
though, it is well known that increasing the thickness of the
grating or utilizing steeper input and output angles—here,
making the output angle more negative—will increase the spec-
tral selectivity of the grating, reducing the spacing between the
first zeros and minimizing the output bandwidth of this system.
The spectral selectivity, Δλ, of this grating can be defined as
[12, Eq. 9.88]

Δλ ≈
Λ cot

�
θB−θcom

2

�

d
λB; (1)

where Λ, the grating period itself, also depends on the two
angles and the center wavelength of input B, λB .

B. Sequential Grating Systems
When one goes beyond a single grating in the system, it be-
comes increasingly difficult to align diffraction efficiency peaks
and zeros. The end result is a system that exhibits unwanted
loss due to spurious diffraction. Following inputs A and B
through such a system by referring to Fig. 5, the first grating
(denoted G1) exhibits 100% diffraction efficiency for an input
�λB � 1035 nm; θB�, and the second grating (denoted G2) ex-
hibits essentially 0% diffraction efficiency for an input
�λB; θcom�. We therefore can expect input B to traverse the sys-
tem without loss. However, there is no wavelength for which
both gratings exhibit 0% diffraction efficiency for input A in-
cident at θA � θcom, so we expect some loss for that channel.
(λA � 1026 nm would provide close to ideal performance.)

Again referring to Fig. 5, input C in a cascaded arrangement
(see Fig. 1) would only interact with the second grating, so
100% diffraction efficiency could be expected. However, for
no loss in a sandwiched arrangement (Fig. 2), there would need

to be an operating point �λC ; θC � where the diffraction effi-
ciency of grating 1 is 0% while the diffraction efficiency of gra-
ting 2 is 100%. Inputs B and C necessarily enter the system at
different angles (i.e., θB ≠ θC ), so low loss for both channels
could be relatively easily achieved at the second grating.
However, one can see how the general conditions of low loss,
multiple gratings, and narrow, fixed bandwidth are quite diffi-
cult to achieve simultaneously.

C. Multiplexed Grating Systems
The loss mechanisms for a multiplexed grating arrangement
are more complex still. When more than one grating is present
in a single HOE, one can no longer merely attempt to align
appropriate peaks and zeros in the various individual diffraction
efficiency curves. Rather, the gratings must be treated simulta-
neously for an input at a particular wavelength and angle, and
this forces changes to the set of coupled-wave equations
describing the interaction.

Methods appear in the literature for determining and solving
the coupled-wave equations describing multiplexed transmis-
sion phase gratings. There are analytical methods covering
cross-coupling and intergrating interference for dual-grating
monochromatic systems [13–15]. In addition, there are
methods covering the more general case of polychromatic
systems [16].

In a recently published work by the authors [17], an
algorithmic approach for calculating diffraction efficiencies
in multiplexed grating HOEs was presented. We will use this
approach in the studies presented in Section 3. Briefly, this
method builds upon the coupled-wave equations of Kogelnik
[11] to algorithmically construct a matrix equation describing
energy transfer among a set of significant waves within the
HOE. For a single grating, it is assumed that only two signifi-
cant waves are present in the HOE, and the coupled-wave
equations of Kogelnik are

cRR 0 � jκS; (2a)

cSS 0 − jϑS � jκR; (2b)

Fig. 4. Diffraction efficiency of a single volume Bragg grating as a
function of wavelength for input angles corresponding to the two
channels combined by this HOE. The grating parameters are de-
scribed in the main text. Note how the horizontal scaling of the dif-
fraction efficiency curve varies depending on which input angle is used.

Fig. 5. Diffraction efficiency curves versus wavelength for two gra-
tings, G1 and G2, in a sequential grating SBC system for the input
angles corresponding to inputs A and B.

6246 Vol. 54, No. 20 / July 10 2015 / Applied Optics Research Article



where R and S refer to the complex amplitudes of the
“Reference” and “Signal” waves, respectively, and are functions
of z, the distance traveled through the HOE. Primes indicate
first derivatives in z. κ is the coupling coefficient and is a func-
tion of the index modulation, n1, of the grating and the oper-
ating wavelength, and cR and cS are the direction cosines of the
respective waves. ϑ is the so-called dephasing parameter and is a
function of the vector combination of the input wavevector and
the grating vector. The value of ϑ is 0 if the input is Bragg-
matched with the grating but grows large as the input is de-
tuned from the Bragg condition in angle and/or wavelength.
Solving these two equations simultaneously and imposing
boundary conditions at the input [i.e., R�0� � 1 and
S�0� � 0] allows one to calculate the energy distribution be-
tween the waves at the output [i.e., R�d � and S�d �], and thus
the diffraction efficiency of the grating for the given input.

For additional gratings in an HOE to be properly handled,
the set of differential equations in Eq. (2) must be expanded
and solved simultaneously. In particular, the authors’ method
involves combining the input wavevector with each grating
vector—and indeed various sum and difference combinations
of the grating vectors—to build a full set ofM waves within the
material and thus a full set of coupled differential equations
represented by an M ×M matrix. Determining the energy
distribution among all of the significant waves at the output
and their associated diffraction efficiency values involves
eigenvector decomposition of this matrix and again imposing
appropriate boundary conditions.

Fortunately many combinations of the input wavevector
and the grating vectors result in large associated values of ϑ,
and the corresponding waves may be safely disregarded.
Nonetheless, for systems of many gratings, M can grow quite
large. The consequence of these additional coupled waves for a
multiplexed grating SBC system is increased spurious diffrac-
tion (cross-coupling or intergrating interference), resulting in
decreased efficiency relative to a similar sequential grating
system.

In a sandwiched or cascaded grating arrangement, the sys-
tem of two gratings explored in Fig. 5 was expected to provide
near 100% system efficiency for its three inputs. If we collapse
those two gratings into a single HOE to create a multiplexed
grating arrangement, though, the resulting calculated efficiency
values are significantly different as shown in Fig. 6. Here, both
inputs B and C are subject to efficiency losses greater than 10%
at their respective wavelengths due to spurious waves and gra-
ting cross-coupling occurring within the single HOE.

Some insight can be gained by investigating the diffraction
efficiency for input B as a function of depth, z, in the grating as
shown in Fig. 7. This essentially depicts the transfer of energy
between the given input wave and desired output wave, as these
waves travel through the HOE from z � 0 to z � d , where d
is the thickness of the material. One curve in the figure repre-
sents this energy transfer for an HOE with only Grating 1
present, and we can see that the curve reaches 100% energy
transfer at z � d as desired. The other curve, though, repre-
sents this energy transfer with Grating 2 present in the
HOE as well, and we can see that not only does the energy
transfer peak occur for z ≠ d, but, more importantly, the curve

never reaches 100% energy transfer. In general, some of the
energy that is not transferred into the output wave of interest
remains in the input wave and some is diffracted into a spu-
rious wave.

Clearly it is nontrivial to design an SBC system, especially as
the number of channels increases. Given physical constraints
(overall size, input angles, etc.) on a sequential grating system,
it is not practical in general to achieve perfect alignment of all
pertinent combinations of diffraction efficiency peaks and zeros
for all gratings. Multiplexed grating systems, despite the advan-
tages that come with having a single HOE, further suffer from
intergrating interference effects within that single HOE.

For some applications, it has been correctly suggested that
cross-coupling and intergrating interference effects can be
essentially eliminated through wide separation of channel

Fig. 6. Diffraction efficiencies at the system output for inputs B
and C of a two-grating multiplexed SBC system formed by trivially
collapsing the two gratings of a sandwiched grating system into a single
HOE.

Fig. 7. Diffraction efficiency of Grating 1 as a function of HOE
depth, z, for input B satisfying the Bragg condition. The solid red
curve shows the efficiency with Grating 1 alone (i.e., Grating 2 is
not present in the HOE). The dashed blue curve shows the effect
of adding Grating 2 to the HOE. The vertical dashed line indicates
z � d , where d is the thickness of the HOE.
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wavelengths [18,19]. This, however, is counter to our goal of
maximizing channel density in an SBC system given a fixed
operating bandwidth.

In the next section, we introduce an optimization method
that aims to find design parameters for SBC systems which pro-
vide the highest overall efficiency for a fixed system bandwidth
given the number of channels in the system. Using this
method, we compare the relative channel density limits of
the different classes of SBC systems. We further explore the
effects of nonplanewave inputs on system performance.

3. SBC SYSTEM OPTIMIZATION

Optimizing a multigrating SBC system is a nonlinear problem
of many dimensions. In order to explore the solution spaces for
multiplexed and sequential grating systems, we employ a com-
putationally efficient metaheuristic algorithm. We apply prac-
tical constraints to each system variable and then use particle
swarm optimization (PSO) [20] to determine a set of param-
eters that results in the SBC system with the highest overall
efficiency.

We define three system-wide variables that are held constant
for a given optimization run: the number of channels, N ; the
material thickness, d ; and the common output angle, θcom.
Further, the optimizer adjusts three grating variables for each
channel: center wavelength (λcenter), input angle (θin), and in-
dex modulation n1. To compare the effects of different values
of the system-wide variables, we optimized cascaded, sand-
wiched, and multiplexed grating SBC systems in the four
groups summarized in Table 1. For all four groups, we keep
the operating bandwidth of the system fixed at 1030–1040 nm.

We chose the two values for d in Table 1 to be sufficiently
different to allow us to show trends in the effect of material
thickness on channel density and system efficiency. Further,
we chose these thickness values to be relatively small in order
to limit the maximum value ofN that we needed to consider in
the optimization runs. As discussed in Section 3.A, as the
material thickness under consideration increases, the number
of channels supported in an efficient system also increases, re-
sulting in much longer execution times for the optimizer with-
out providing additional insight into the general problem. A
similar argument applies to the selection of values for θcom.

Within each of the four groups, we explored several values of
N . In each case, the optimizer adjusts 3N parameters (i.e.,
three grating variables times N channels) which are allowed
to vary over the ranges summarized in Table 2. Early experi-
ments with this method revealed that the optimizer tended to
space channels equally within the given fixed operating band-
width. To improve the efficiency of the algorithm, we then

modified it to assume small adjustments to channel wave-
lengths around this equal spacing. This eliminates large vol-
umes of the 3N -dimensional search space where results are
known to be quite poor. Likewise, the index modulation for
each grating is allowed to vary over a narrow range around
the value that would give the grating 100% efficiency in
Kogelnik’s calculation for a single lossless transmission grating.

The particle swarm is initialized with 200 particles uni-
formly distributed within the search space with zero velocity.
In each iteration, each particle’s energy is calculated using a
metric based on the represented SBC system’s total diffraction
efficiency (i.e., the sum of the diffraction efficiencies at each
channel’s input angle and center wavelength). The best energy
for each particle and for the swarm of particles as a whole is
tracked, and each particle’s new velocity vector, vn�1, and
new position vector, pn�1, are calculated as follows:

vn�1 � ωvn � ϕprpΔp;best � ϕg rgΔg;best; (3)

pn�1 � pn � vn�1 × �1 iteration�; (4)

where ω, ϕp, and ϕg are tuning constants for the simulation;
Δp;best and Δg;best are the Euclidean distances between the given
particle and the particle’s and swarm’s (respectively) best-known
positions; and rp and rg are uniformly distributed random
numbers between 0 and 1 that are updated for each calculation.
If an element of a particle’s new position vector exceeds the
defined limits of the search space, that element is set to the
nearest boundary and the corresponding element of the par-
ticle’s velocity vector is set to 0.

Given finite execution time, PSO does not guarantee find-
ing the global optimum. However, by adjusting the simulation
variables ω, ϕp, and ϕg , the convergence of the simulation can
be adjusted to avoid converging too quickly to a local minimum
and also to avoid converging too slowly in general. Examining
Eq. (3), ω is analogous to the particle’s inertia, and ϕp and ϕg
are analogous to gravity pulling the particle toward the particle’s
and swarm’s best-known positions. The values of these variables
were determined through experimentation and are initialized in
the optimizer to 0.80, 0.30, and 0.05, respectively. The opti-
mizer runs for 200 iterations, and after 170 iterations these val-
ues are changed to 0.55, 0.25, and 0.15, respectively, to
accelerate convergence to the swarm’s best-known position
and increase the number of particles in the vicinity of that po-
sition to fine-tune the result. To reinforce the validity of these
tuning parameters, we executed the optimizer multiple times
under the same constraints and compared the results, expecting
the optimizer to return a system with comparable efficiency
each time. The consistency of the results of multiple runs
shown in Section 3.A indicates that these tuning parameter

Table 1. System-Wide Variable Constraints Placed on
the Optimization Algorithm for Each of the Four
Simulation Groups

d [μm] θcom

Group 1 500 0°
Group 2 500 −30°
Group 3 1000 0°
Group 4 1000 −30°

Table 2. Constraints Placed on the Optimization
Algorithm for Each of the Gratings’ Three Independent
Variables

λcenter �1 nm variation around evenly spaced channels within
fixed bandwidth

θin 35°–50°
n1 Kogelnik result �5 × 10−5
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values slow convergence of the swarm sufficiently to avoid local
extrema, while still allowing consistent convergence within the
200 iteration limit imposed to maintain a practical maximum
execution time on the order of hours.

The next section explores optimization results for planewave
inputs; then the following section explores optimization results
when inputs of finite transverse extent are taken into account.

A. Results for Planewave Inputs
In the following subsections, we present system efficiency results
for optimized multiplexed and sequential grating SBC systems
operating between 1030 and 1040 nm for increasing numbers
of channels. Note that in these simulations, we do not include
the through-channel (e.g., channel A in Fig. 1). Rather, we only
include diffracted channels for which there is an associated gra-
ting. The parameters of the through-channel do impact system
performance, but neglecting the through-channel in the optimi-
zation algorithm reduces the dimensionality of the system,
which reduces optimization time. To add the through-channel
to a system, one would optimize over a band slightly narrower
than the desired operating band and then add the through-
channel on either end of the band following optimization either
manually or via a separate algorithm.

1. Multiplexed Grating Systems
We executed the optimizer for multiplexed grating SBC sys-
tems for each of the four system parameter groups (Table 1)
for up to 14 channels and an operating band covering
1030–1040 nm. In each case, we repeated the optimization five
times to check consistency, and results are plotted in terms of
system efficiency in Fig. 8. System efficiency for each group
decreases from near 100% as the number of channels increases
and intergrating interference effects begin to compromise
performance. Note that as efficiency falls off for a given group,
optimization consistency also decreases. Intergrating interfer-
ence in these arrangements strongly limits the achievable
system efficiency, resulting in many solutions with relatively

poor performance. Given the optimizer’s finite execution time,
the best of the poor solutions is not always discovered.

All four groups perform similarly—and rather well—until
four channels are included in the system. At this point, the in-
tergrating interference in Group 1 (i.e., the thinner material
and shallower output angle) begins to compromise system per-
formance. The remaining three groups continue to perform
well until eight channels are employed when the curves for
Groups 2 and 3 drop below the horizontal line, indicating
90% system efficiency. It is clear from Fig. 8 that Group 2 per-
forms slightly better than Group 3 as the number of channels in
the system is increased. This suggests that given the basic con-
straints we have placed on the system (i.e., operating band-
width, operating angles, thicknesses), a steeper output angle
has more of an effect on wavelength selectivity [see Eq. (1)]
of a given grating than material thickness although this is
not necessarily the case in general. Finally, using both a thick
material and a steep output angle (i.e., Group 4) exhibits the
best performance of all four groups, allowing greater than 50%
more channels than the next best group if we enforce a system
efficiency limit of 90%.

2. Sequential Grating Systems
Like with the multiplexed grating systems, we also executed the
optimizer for cascaded and sandwiched grating SBC systems for
each of the four groups, and for up to 20 channels and an op-
erating band again covering 1030–1040 nm. The results for the
cascaded systems are plotted in terms of system efficiency in
Fig. 9. Again, system efficiency for each group decreases as
the number of channels in the system is increased and
cross-coupling effects become more prominent. In a similar
fashion to the multiplexed grating system, Group 1 is the worst
performer, Group 4 the best, and Group 2 slightly outperforms
Group 3. This reinforces the notion that steep output angles
and thick materials improve channel density, and for the ranges
of parameters considered here, a steep output angle improves

Fig. 8. Optimized multiplexed grating system efficiency for each of
the four system parameter groups as a function of the number of chan-
nels in the system, N . Operating bandwidth is fixed at 1030–
1040 nm. The dashed horizontal line indicates an arbitrary system
efficiency goal of 90%. Stacked symbols indicate the results of repeated
optimizer runs for a given set of inputs.

Fig. 9. Optimized cascaded grating system efficiency for each of the
four system parameter groups as a function of the number of channels
in the system, N . Operating bandwidth is fixed at 1030–1040 nm.
The dashed horizontal line indicates an arbitrary system efficiency goal
of 90%. Stacked symbols indicate the results of repeated optimizer
runs for a given set of inputs.
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channel density somewhat more than a thicker holographic
material.

The key comparison, though, is the performance of multi-
plexed grating systems and sequential grating systems within
the same group. The differing nature of the interference in a
sequential system discussed in Section 2 allows for many more
channels than in a multiplexed grating system, regardless of
group, before system efficiency is compromised. Using 90%
system efficiency as a basic metric and referencing Figs. 8
and 9, for each of the four groups, the cascaded grating arrange-
ment supports roughly 50% more channels than the multi-
plexed arrangement in the same group.

Results for sandwiched grating systems are not plotted here
for brevity. As one might expect, though, these systems outper-
form multiplexed grating systems group by group. However,
they do not perform as well as cascaded grating systems because
every input must interact with every grating in the sandwiched
grating arrangement, which increases loss. Efficiency of 90%
was achieved for the sandwiched grating arrangement for 6,
10, 9, and 17 channels for Groups 1–4, respectively.

These results do not suggest, though, that for a practical case
a sequential grating system should always be preferred over a
multiplexed grating system. First, in the optimization calcula-
tions, the fixed material thickness is used on a per-grating basis
in order to keep the spectral widths of the channels relatively
constant. So if an N -channel multiplexed grating system has
a thickness d—with all gratings sharing the same slab of
material—an N -channel sandwiched grating system would
have a thickness of Nd with each grating occupying a separate
slab of material and a cascaded grating system would be larger
still because of the spacing between the individual HOEs. If
instead we assume that each grating in a sequential system
had a thickness of d∕N , the spectral widths of the resulting
gratings’ efficiency curves would be very wide and intergrating
interference would be severe. The multiplexed system would
outperform the sequential system in every case.

In addition to the difference in the overall system thickness,
other practical considerations need to be made when choosing
between a sequential arrangement and a multiplexed one.
These include ease and repeatability of assembly, alignment,
and thermal management. Depending on these other factors,
a multiplexed grating architecture may be preferred in some
cases despite lower efficiency for a given number of channels.
However, these considerations must also be weighed against
limitations to the number of gratings that can be successfully
multiplexed given the dynamic range of the holographic
medium and difficulties arising from multiple exposures
(e.g., partial erasure) [21].

B. Results for Finite Beam Inputs
An important factor that is not considered in the results of the
previous section is the angular acceptance of the constituent
volume Bragg gratings in these types of SBC systems (i.e.,
how diffraction efficiency decreases for inputs mismatched
in angle from the Bragg condition). Until now, only planewave
inputs have been considered in the system optimization algo-
rithm, and as we have shown, parameter groups involving
steeper output angles and thicker materials exhibit higher effi-
ciency at higher channel counts. It is clear that favoring these

parameters improves channel density because the spectral width
of a grating’s diffraction efficiency curve narrows as steeper an-
gles and thicker materials are used. This reduction in spectral
width for a given grating correlates with a reduction in the
effects of intergrating interference for a given number of chan-
nels and a fixed operating spectrum. However, similar narrow-
ing is evident in the angular width of the grating’s diffraction
efficiency curve. If we assume Gaussian inputs of various radii
instead of planewave inputs, and we consider the angular pla-
newave spectra of these inputs when calculating the diffraction
efficiency for each channel (see, e.g., [22]), there must be a
compromise between increasing angles and/or thickness to
narrow spectral width (i.e., to increase channel density) and
decreasing angles and/or thickness to improve angular
acceptance (i.e., to reduce per-channel loss due to nondiffracted
power).

The relative sizes of the angular acceptance curve of a typical
Group 1 grating and the angular planewave spectra for various
Gaussian beam widths (assuming a wavelength of 1035 nm) are
depicted in Fig. 10. Clearly, even for a beam radius of 1 mm,
the width of the beam’s angular planewave spectrum is signifi-
cant relative to the width of the central lobe of the grating’s
diffraction efficiency curve. This will result in a decrease in
per-channel efficiency independent of intergrating interference
effects.

The following sections present optimization results for SBC
systems accounting for these finite input widths. The optimi-
zation algorithm was modified to use the beam radius as an
additional system-wide variable. Diffraction efficiencies at 15
angles between the 1∕e2 points of the Gaussian angular plane-
wave power spectrum are weighted, calculated, and combined
to give an aggregate diffraction efficiency for that channel given
the beam radius. (Beam shape and beam quality are not con-
sidered here.)

1. Output Angle Optimization
We begin by keeping the thickness of the holographic material
fixed at 0.5 mm and allowing the optimizer to vary the chan-
nels’ common output angles between 0° and −30°. That is, in
addition to selecting center wavelengths, modulation levels,

Grating
Diffraction Efficiency

Fig. 10. Relative angular widths for Gaussian inputs at 1035 nm
with various radii compared with the diffraction efficiency as a func-
tion of input angle (for a fixed wavelength) of a typical Group 1 grating
centered at 1035 nm.
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and input angles for each channel, the optimizer is also choos-
ing a common output angle for the system between the angles
previously defined for Groups 1 and 2.

The system efficiency results as a function of beam radius
for this exercise are shown in Fig. 11 for a five-channel multi-
plexed grating system. Also depicted for comparison are the
optimization results if the system output angle is kept fixed
at 0° (Group 1) and −30° (Group 2).

For a large beam radius, the angle-optimized system per-
forms as well as the Group 2 system. This is because, for large
beam radius, the system is not constrained by angular clipping
and the optimizer simply selects the steepest allowed output
angle (−30° in this case) to minimize intergrating interference.
However, as the beam radius decreases, the efficiency of the
Group 2 system falls off more quickly than the other systems
due to clipping of the inputs’ angular planewave spectra.

At a radius of 0.5 mm, the angle-optimized system exhibits
the highest efficiency because it uses an output angle that is a
compromise between angular clipping and intergrating interfer-
ence. For this input radius, the steeper −30° output angle gives
rise to clipping of the angular spectra of the inputs while the
shallower 0° output angle results in a system that is limited by
intergrating interference.

For radii less than 0.5 mm, the effect of angular clipping
supersedes the effect of intergrating interference and the
performance of the angle-optimized system converges with
the Group 1 system. That is, the optimizer selects the shallowest
available angle to minimize per-channel loss due to angular clip-
ping despite the intergrating interference that is also present.

The output angles selected by the optimizer are plotted ver-
sus input beam radius in Fig. 12. The trend of the optimizer
selecting a shallower common output angle for small beam radii
is clear. Note, though, the relative inconsistency of the selected
output angle for small radii shown in Fig. 12 despite the
consistency in the system efficiency from the same optimization

runs shown in Fig. 11. This suggests that as the best attainable
system efficiency—the parameter that the algorithm is
optimizing—decreases, there are many combinations of system
parameters that can achieve that efficiency as angular clipping is
traded against intergrating interference.

Similar data for output angle optimization in both a cas-
caded and sandwiched grating system was generated but is
not included here. The trends are similar to the multiplexed
grating system. For large input beam radii, the optimizer tends
toward the steepest output angle available to minimize cross-
coupling among the gratings. As the input beam radius de-
creases, the optimizer decreases the common output angle of
the system to reduce clipping of the input beams resulting from
the narrow angular response of the grating despite increasing
cross-coupling.

Again, of course, the overall efficiency of these sequential
arrangements decreases dramatically as the input beam radius
drops below approximately 1 mm just like the multiplexed gra-
ting arrangement. Given the constraints of a particular group
and a fixed operating bandwidth, there is a beam radius below
which angular clipping effects dominate, resulting in poor
performance regardless of whether the SBC system uses multi-
plexed or sequential gratings.

2. Output Angle and Thickness Limitations
In the previous section, we used our PSO algorithm to select an
optimum output angle for an SBC system in addition to opti-
mizing the parameters for each diffracted channel. This was per-
formed for a range of beam radii but for a fixed thickness. In this
section, we show optimization results for multiplexed grating
SBC systems over variation in hologram thickness as well.
Again, for each case the optimization algorithm arrives at the
best common output angle for the system given other parame-
ters, although the final output angles are not shown here.

Figure 13 shows regions of the holographic element thick-
ness (d ) versus beam radius (r) space for which ≥ 90% system

Fig. 11. Efficiency of a five-channel multiplexed grating system as a
function of input beam radius. The material thickness is kept constant
at 0.5 mm. The three curves indicate the efficiency results with
the system output angle fixed at 0° (Group 1), fixed at −30°
(Group 2), and optimized between those two angles. Stacked symbols
indicate the results of repeated optimizer runs.

Fig. 12. Optimized output angle for a five-channel multiplexed gra-
ting system as a function of input beam radius. The material thickness
is kept constant at 0.5 mm. Stacked symbols indicate the results of
repeated optimizer runs, and the solid line indicates the angles asso-
ciated with the highest achieved system efficiency (see Fig. 11) for a
given input beam radius.
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efficiency can be achieved in a multiplexed grating system for a
given number of channels. In the upper right of the plot (i.e.,
for inputs approaching planewaves and for thicker materials),
the highest numbers of channels are supported. With (near)
planewave inputs, the systems are not limited by angular clip-
ping, so the optimizer is free to choose the steepest available
output angle (−30°) and the results approach the Group 4 re-
sults shown in Fig. 8. That is, for r � ∞—or, in fact, r ≥
4.00 mm for the systems described—and d � 1.00 mm, a
multiplexed grating system can support N ≤ 12 with at least
90% efficiency, or Nmax � 12. (Note that the plot only shows
up to N � 7 for clarity.)

Continuing clockwise to the lower-right region of Fig. 13,
we can see the effects of intergrating interference on overall sys-
tem efficiency. As the thickness of the material decreases to
0.5 mm, the optimizer again favors a steeper common output
angle, and the results match the Group 2 results in Fig. 8 for
planewave inputs (Nmax � 7). The optimizer is not allowed to
increase the common output angle beyond −30°, so as the holo-
gram thickness decreases below 0.5 mm, Nmax decreases due to
intergrating interference.

Moving to the lower-left region of Fig. 13, there is not a
significant difference in Nmax as the beam radius decreases.
In this region, the material is relatively thin and the optimizer
can additionally reduce the common output angle, both of
which tend to avoid loss due to angular clipping which is typ-
ically present for lower values of r. However, a thin material and
a shallow output angle together lead to significant intergrating
interference (cf. Group 1 in Fig. 8), so the number of supported
channels, Nmax, remains small.

Finally, inspecting the upper-left region of Fig. 13, we note
that the multiplexed grating system cannot support even a small
number of diffracted channels when utilizing thicker materials

and smaller beam radii. Nmax → 0 simply due to angular
clipping.

Similar data to Fig. 13 can be shown for sequential grating
systems but is not included here for brevity. The numbers of
supported channels under a 90% efficiency constraint follow
Fig. 9 for cascaded grating systems as r → ∞. Also, Nmax falls
off quite similarly to the trends shown in Fig. 13 as r → 0
because, again, power loss due to angular clipping affects both
sequential and multiplexed grating SBC systems in an essen-
tially equivalent manner.

4. CONCLUSION

SBCs utilizing multiple volume Bragg gratings must be care-
fully analyzed to maximize performance. This analysis grows
increasingly difficult as the number of channels—and therefore
the number of variables—increases, and heuristic optimization
techniques are useful tools for exploring the limits of these
systems.

Of the three system classes discussed, the highest channel
densities were achieved by cascaded grating systems because
each input beam in such a system only interacts with sub-
sequent gratings in the cascade. However, this also leads to
cascaded grating systems being physically larger than the other
two classes due to the required spaces between the single-
grating HOEs.

Sandwiched grating systems exhibited the next best channel
densities, only slightly lower than cascaded grating systems.
This decrease is due to each input beam interacting with all
of the individual gratings in the system but comes with the
advantage of a more compact arrangement.

The multiplexed grating system exhibited the poorest per-
formance of the three system classes. It is also the most difficult
to analyze, being subject to intergrating interference effects
within its single HOE. Requiring only one HOE, though,
is a distinct advantage to this type of system.

Finally, when nonplanewave inputs are used with any of
these grating arrangements, overall system efficiency drops
quickly as beam radii decrease. This is due to limited angular
acceptance in these volume Bragg gratings which affects all
three arrangements roughly equally. However, when used in
high-power SBC applications, these volume gratings would
most likely be designed for use with expanded beams to ac-
count for thermal limitations, and less attention would need
to be paid to beam radius considerations.
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