Towards Transforming Energy Systems Education

Dr. Don Lewis Millard
Lead Program Officer, Division of Undergraduate Education
National Science Foundation

Intent

1) Set the stage for reforming Electric Energy Systems (EES) education
2) Offer a brief perspective of emerging trends in education
3) Provide some background that should be considered - to transform EES education

Caution: Most of the information presented represents the presenter’s opinion and is not an official NSF position.

Please Note: Some of the slides come from Carl Wieman’s presentation at the 2011 TUES / CCLI PI meeting (1/27/11)

From: “Measuring Up 2008”
It is getting worse…

Present Challenge
- Erosion of our national “educational capital” is occurring just when we need more college educated workers
- Baby Boomers retiring
- Increasing skill requirements are necessary for new electric energy/power systems related jobs

The White House Perspective
- “Maintaining our leadership in research and technology is crucial to America’s success. But if we want to win the future – if we want innovation to produce jobs in America and not overseas – then we also have to win the race to educate our kids.”

Major Policy questions:
- What is effective teaching, particularly in STEM?
- Can it be developed? How?
- How can we achieve better learning? (evidence)

2) Emerging trends in education...

Major Advances Over Past 1-2 Decades

Brain research
- Classroom studies
- Cognitive psychology

Principles of learning help to design experiments and make sense of results - need to understand both what and why

Brain Research
MRI data related to learning
- Significantly changes the brain; doesn't just add bits of knowledge
- Building proteins, growing neurons => enhance neuron connections...
- Does the brain operate similar to a muscle? More exercise, more wiring?

Perceptions About Science/Engineering*

Novice
- Content: isolated pieces of information to be memorized
- Handled down by an authority, unrelated to real world:
- Problem solving: simple "template matching" to memorized recipes

Expert
- Content: coherent structure of concepts
- Established by experiment, describes nature
- Problem Solving: systematic concept-based strategies, widely applicable

Note: consistent across scientists/engineers in a discipline

“Expert” Competence Research*

Expert competence equals:
- Factual knowledge
- Mental organizational framework => retrieval and application
- Ability to monitor own thinking and learning
("Do I understand this? How can I check?")

New ways of thinking: requires MANY hours of intense practice to develop

Developing Expertise

“Deliberate practice” (Anders Ericsson)
- Do a challenging (but achievable) level task that requires explicit expert-like thinking and intense engagement
- Reflection and guidance on result
- Repeat & repeat & repeat...
- 10,000 hours later...very high level expertise

Brain changes; develops with "exercise"
- "Constructivism", "formative assessment", "self-regulated learning" - all contained in "deliberate practice" framework

Relationship of Sense to Meaning
- Does this make sense?

- Based on experience
- Does it have meaning?

- Material relevant to the learner
- Meaning is more significant for longer-term storage
Historic Transformations in Engineering Education

- Science-based engineering
- Computers in the classroom
- Active, team-based learning
- Widespread internet access
- Jam-packed curricula…

What We’ve Learned

- Active classrooms trump passive classrooms
- Reflection fosters re-organization of thinking for deep learning
- Students will remember more if provided less at any given time (average capacity of working memory is 7 chunks)

7032924620
(703) 292-4620

A Potential Class

1. Pre-class intro/exploration activity (research)
2. On-line assessment → JIT in-class planning
3. Preliminary in-class reflective question to stimulate discussion and develop coherence (Concept inventory)
4. Inquiry-based, guided interactive/hands-on activity
5. Response system-based, open-ended question to foster restructuring (clickers)
6. Post-class concept assessment/reinforcement
3) Background considerations...

Energy Systems Workforce Issues

- Industry needs a combination of left/right brain thinking
- EES jobs require good research, synthesis, and systems integration abilities
- China is trying to become more innovative, while the US is trying to be more rigorous (it is better to be the US)
- Need to stimulate, enable and foster creativity (Why did Steve Jobs, Bill Gates & Mark Zuckerberg drop out of college?)

Why Engineering Students Leave

- Lack of role models – especially for women and underrepresented minority students
- Poor advising & teaching – combined with a lack of exposure to engineering early on...leads to discouragement and departure
- Fear of outsourcing
- Lack of connection between what is studied and perceived as exciting practice

Creativity Definition Ranking

<table>
<thead>
<tr>
<th>Topic</th>
<th>Industry</th>
<th>Academia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem identification or articulation</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Ability to identify patterns of behavior or new combination of actions</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Integration of knowledge across different disciplines</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ability to originate new ideas</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Comfort with notion of "no right answer"</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Fundamental curiosity</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Originality and inventiveness in work</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Problem solving</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Ability to take risks</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Tolerance of ambiguity</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Ability to communicate new ideas to others</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

From D. Pink – *A Whole New Mind: Why Right-Brainers Will Rule the Future*

Why Engineering Students Leave

- Poor performance in intro math/science courses
- Coursework too restrictive for students’ varied interests
- Perception that other majors have easier classes and more fun – view engineering as a competitive and uncaring field
- A feeling of isolation from rest of the university – due to the workload, lack of cross disciplinary opportunities

Today’s Realities

- Engineering schools are heavily influenced by academic traditions that don’t always support the profession’s needs
- We aren’t very effective in preparing students to integrate/organize their knowledge, skills and identity as a professional
An Opportunity

NSF Impact

- NSF uses merit review to select about 10,000 new awards each year from more than 42,000 competitive proposals submitted annually

Solicitation ➔ Proposal ➔ Review ➔ Award ➔ Project

NSF TUES Program (formerly CCLI)

- Title changed to emphasize the special interest in projects that have the potential to transform undergraduate STEM education
- Emphasizes:
 - Materials, processes, or models that enhance student learning
 - Widespread adoption of best classroom practices
 - Adaptation at many sites
 - Exploration of cyberlearning

A Successful Proposal

- Good idea + need
- Right people + infrastructure
- Assessment of outcomes that measure effect on student learning (with goals/objectives linked to evaluation)
- Active dissemination plan
- Efforts to broaden participation of underrepresented groups

Answer Reviewers’ Questions

- What are you trying to accomplish? } Goals
- What will be the outcomes?
- Why do you believe that you have a good idea? } Rationale
- Why is the problem important?
- Why is your approach promising?
- How will you manage the project to ensure success? } Evaluation
- How will you know if you succeed?
- How will others find out about your work?
- How will you interest them?
- How will you excite them? } Dissemination

This is not a comprehensive list!

Promising Strategies
What Works

- Guided inquiry
- Concept inventories
- Peer-led team learning
- Problem-based learning
- Active recall of information
- Effective use of technology

Process-Oriented Guided Inquiry Learning

- Work in teams to complete specially designed worksheets that guide them through the inquiry process of learning
- Students are given data/information followed by leading questions
- Discuss material - rather than just hear about it
- 3 Phases: Exploration, Concept Invention, Application
- Instructor serves as facilitator, observing and periodically addressing individual and class needs

Peer-Led Team Learning

- Students who do well are trained as “peer leaders” - to guide the efforts of 6-8 students
- Groups meet weekly (outside of class) to work together on challenging problems that help build conceptual understanding and skills
- Problems that can’t be solved easily on one’s own
- PLTL sessions replace traditional recitation sections
- Dept/Institutional support is essential, including logistics and finance

Problem/Service-Based Learning

- Instructor led/facilitated
- Complex problems - open-ended, real world, deliberately vague
- Problems drive concept discovery on a need-to-know basis
- Ideal class size < 30 students (groups of 4-5)
- Concepts will be understood and remembered longer when learned, explored, discussed, applied and tested in a practical context

Technology Example

Engagement

Mobile Studio
Towards Reform/Transformation...

- **3C’s:**
 1) Core (teaching/learning)
 2) Culture (communication/adoption)
 3) Community (local/global)

Why Are We Here?

- **Engage**
- **Educate**
- **Expand the community**
 1. Faculty → Faculty
 2. Admin → Faculty
 3. Faculty → Admin

In closing:

- Look to your left
- Look to your right
- Because...

You are the change agents for our future energy systems...

Thank you.

dmillard@nsf.gov