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1 Introduction

In this document a simple problem has been analysed in order to appreciate the transient stability
in Power system. This is a simplest possible problem that can be solved analytically.

2 Problem

In Fig. (1) a generator (with reactance Xd = 0.25 pu) is connected to bus (4). The terminal
voltage of the generator is regulated at 1.2 pu. This generator is connected to bus (1) through a
step up power transformer (leakage reactance Xtr = 0.2 pu). Bus (1) is connected to an infinite
bus (2) through two identical parallel transmission lines (reactance perunit length is 0.3174 Ω per
Km and it is 100 Km long). The base voltage and MVA of this system is 345 KV and 1500 MVA
respectively. Initially the generator was supplying 1500 MW. A three phase symmetrical fault
occurs at a distance of 20 km from bus (1) on one of the transmission lines. This fault is cleared
after some time. Note that in this problem the change in the magnitude of the back emf E and
Xd during fault due to the saturation effect (due to the rise in armature current) is neglected. The
following parameters are used for the swing equation: H = 3.5 pu, ωsyn = 2π60 and damping
coefficient D = 7.5.
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Figure 1: Single line diagram
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Figure 2: Powerflow in PowerWorld

3 Solution

3.1 Pre Fault Calculations

First we need to compute the electrical power flowing out of the generator as a function of δ

(the phase angle of the back emf of the generator). In order to do that, we need to compute the
magnitude of the back emf E. The per unit reactance of each of the transmission line turns out to
be XL = j0.4. First let us compute the phase angle of the voltage at bus 4. From (1), δ4 is equal
to 19.47o. Note that V4 = 1.2 pu. Now the back emf of the generator can be computed using (2).
The back emf is 1.37∠28.18o. The electrical power flowing before the fault as a function of δ is
given in (3). Pprepk is 2.12.

P =
V4 sin δ4

(

Xtr +
XL

2

) (1)

E∠δ = V4∠δ4 +
(V4 sin δ4 − 1)

j
(

Xtr +
XL

2

)jXd (2)

Pe(δ) =
E

(

Xd +Xtr +
XL

2

) sin δ = Pprepk sin δ (3)

The same system has been simulated in PowerWorld, Fig. (2), and the results match with the
analytical computations.

3.2 Fault

During fault it is assumed that the magnitude of the back emf E does not change. Fig. (3) gives the
equivalent single line diagram of the system during the fault. Where Xth = α

(1+α)XL, Vth = α
(1+α)
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Figure 3: Single line diagram during fault

and α = 0.2. The electrical power during the fault as a function of δ (the generator back emf phase
angle) is given by (4).

Pe(δ) =
EVth

(Xd +Xtr +Xth)
sin δ = Pfaultpk sin δ (4)

During fault the mechanical input power is greater than the generated electrical power as shown
in Fig. (4). So δ keeps on increasing according to the swing equation (5). Neglecting the damping
in the swing equation Equal angle criteria provides a method to compute the maximum or the
critical value of δ. In order to remain in stability the fault needs to be cleared before δ reaches its
critical value. In MATLAB the swing equation is numerically solved and the evolution of δ with
time during fault has been plotted in Fig. (5). Solving (6) we can get the value of the critical angle
(δcritical)and then using the plot in Fig. (5) we can get the critical clearing time. Which turns out
to be 0.242 secs in this particular case.

(

2H

ωsyn

)

d2δ

dt2
+Dδ = Pm − Pe(δ) (5)

∫ δcritical

δo

(Pm − Pfaultpk sin δ)dδ =

∫ π−δo

δcritical

(Pprepk sin δ − Pm)dδ (6)

This system has been simulated both in MATLAB and PowerWorld. In both the simulations
fault occurs at 0.2 secs and it is cleared at 0.4 secs. If the damping term is removed from the swing
equation, δ oscillates around its equilibrium point and never settles down. As the fault in this case
is cleared before the critical time with damping the system comes back to its original prefault state,
Fig. (6)(7) and (8).

In a second case the fault is cleared just after the crtical clearing time i.e. at 0.45 secs and δ is
observed to be diverging, Fig(9) and Fig. (10).

4 Conclusion

In this document a simplest possible transient stability problem has been analysed. The introduc-
tion of an infinite bus in a two bus case may seem to be impractical. But in order to appreciate
the problem of transient stability in a simple case like this, inclusion of an infinite bus is necessary.
This problem clearly illustrates the idea of critical clearing time and its importance in power system
stability. It is to be noted that in a multi-machine situation no analytical approach (like that of
Equal angle criteria) exists to compute the critical clearing time. In that case numerical simulation
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Figure 4: Power angle curves
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Figure 5: Evolution of δ during fault
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Figure 6: Plot of δ without and with damping in MATLAB

Figure 7: Plot of δ without damping in PowerWorld
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Figure 8: Plot of δ with damping in PowerWorld
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Figure 9: unstable case: Plot of δ in MATLAB
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Figure 10: unstable case: Plot of δ in PowerWorld

is the only way out. This problem has been completely solved using MATLAB and results match
with those obtained from a simulation of the identical system in PowerWorld.
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