

engineering strategies for LEED platinum

Great River Energy

Presented to:

University of Minnesota Power Group

by:

Randy Olson, PE, LEED AP Scott Rieger, PE, LEED AP

May 19, 2009

introductions

Randy Olson, PE, LEED AP Mechanical Engineer

Scott Rieger, PE, LEED AP Electrical Engineer

background owner

 Great River Energy
 5th Largest electric generation and transmission cooperative in the United States

background goals

Achieve LEED Platinum

•"...do something with energy efficiency that had never been done before."

> Mike Finley Director of Business Operations Great River Energy

background site selection

background team

Architect:

PERKINS +WILL

Engineer:

mechanical + electrical consulting engineering

background project

- •180,000 sf corporate office
- Data Center
- •Full Kitchen and Cafeteria
- Conference Center

mechanical systems

lake source geothermal vertical ground source vs. lake source

Both feasible

Lake option is less costly

lake source geothermal lake study

- Minimal impact
- Less than 1°F change

Winter

Summer

lake source geothermal lake access and use

- •City owned (not DNR controlled)
- •No public access

lake source geothermal Slim Jim vs. HDPE

- •Slim Jim showed good performance
- •HDPE more proven over time

lake source geothermal installation details

SimpleServiceable

displacement ventilation (DV) energy efficiency

- Less fan static pressure
- •Warmer discharge air temperatures
- Warmer return air temperatures

displacement ventilation indoor air quality (IAQ)

•ASHRAE allows reduction in ventilation quantities with DV

•However provided 30% more than code to improve IAQ

displacement ventilation CFD modeling analysis

Underfloor air flow

- •Underfloor delivery temperature
- Space temperature

displacement ventilation synergy with lake system

- •Free cooling much of the year
- Sensible only, warmer discharge temps

outside air

- Heat recovery
- Free cooling
- Heat pump
- Dehumidification
- Deliver to fan coil units

mechanical systems other strategies

- Variable speed drives
- Temperature controls
- Measurement and Verification

water efficiency rainwater harvesting

electrical

wind power location (urban environment)

- •City of Maple Grove placed restrictions
- Owner Concerns
 - Safety issues
 - Redundant Ice Sensing

wind power turbine

Size: 166 ft tall (top of blade) Rotor diameter of 97 ft
Unit is a NEG Micon M700 manufactured in Denmark

wind power capacity

•Great River Energy purchased unit from Energy Maintenance Services (EMS)

- Shipped to Gary, SD in 2007 for refurbishment
 - Gearbox was remanufactured
 - Generator was rewound

Nameplate data

- •200 KW
- Expected to produce 375,000 kwHr/Yr
- •Total installed cost: (foundation, electrical, etc.)
 - •\$500,000

wind power connection to building/grid

wind power adjustments

•Wind speed vs. output

- •>7 9mph = Motoring (electricity)
- •10 45mph = Producing
- ≥ 30mph rated output
- •45mph = Safety cutout

•Wind Turbine had very inconsistent power factor

- Dependent on wind speed
- •GRE installed power factor correction

wind power wind power graph

^{© 2009} Dunham Associates, Inc. All Rights Reserved

photovoltaic power location

- •72kw PV panels
 - 66kw located on roof
 - •6kw located on ground
- •PV panels mounted at 45 degrees
 - Median average of winter/summer sun angle

photovoltaic power technology

© 2009 Dunham Associates, Inc. All Rights Reserve

photovoltaic power connection to building

- Inverters (12)
 - Sunnyboy, 6kw each
 - 277V, 30A breaker in subpanel

Shuts down with loss of utility power

lighting system daylight harvesting

- Ceiling mounted photo sensors
- •Fixtures with dimming ballasts

lighting system system design

- •Exterior row dimmed separately
 - Measuring light from exterior
- Interior row dimmed individually
 - Measuring light from center atrium
- Center row on/off
- Preset levels

lighting system interior lighting consumption

lighting system exterior lighting

Lower lighting poles

- Better able to control light
- Required more light poles

Reduced the wattage of lamps

• Achieved same foot-candle levels with 15% less wattage

results energy savings

49% reduction in energy costs"Exceptional" calculations required

national awards

USGBC LEED Platinum

- •Consulting Specifying Engineer ARC Gold Award
- •ACEC Engineering Excellence Award - Grand Award
- •AIA/COTE Top Ten Green Project for 2009

thank you for your time

DUNHAM

50 South Sixth Street / Suite 1100 Minneapolis, Minnesota 55402-1540

PHONE 612.465.7550 FAX 612.465.7551 WEB dunhameng.com EMAIL info@dunhameng.com

mechanical + electrical consulting engineering

© 2006-2007 Dunham Associates, Inc. All Rights Reserved.