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Spring 2013 Controls

There are four Parts; assigned 1 point each, for a total of 4 points.

Part I (1 point):
Heat conduction across a slab of metal obeys a partial differential equation where the heat flow per
unit time depends on the temperature gradient and the thermal conductivity. A system which consists
of such a slab of metal, a heating element on one end, and a temperature sensor at some fixed point
is considered. This is a distributed-parameter system with a transfer function which is not a rational
function of s. The transfer function between the rate of heat u(t) provided at one end as the input
and the temperature y(t) being recorded at the sensor location (all in appropriate units) is given and
it is

G(s) = e−
√

s.

Suppose that u(t) varies periodically and is

u(t) = sin(
2π

T
t)

(where t denotes time and T the period of oscillation) and suppose that the oscillation recorded at the
sensor location trails that of the input by a quarter of the period, i.e., that

y(t) = A sin(
2π

T
(t −

T

4
)).

Determine the amplitude A of the temperature oscillations as well as the period T .

Solution:

Evaluate the transfer function at s = 2π
T

j and identify the amplitude and phase

e−
√

2π

T
j = e−

√
2π

T

√

j

= e−
√

2π

T
(
√

2

2
+j

√

2

2
)

= e−
√

π

T
−j
√

π

T .

Then

y(t) = e−
√

π

T sin(
2π

T
t −

√

π

T
).

Therefore
√

π

T
=

π

2

which leads us to the values:

T = 4
π

A = e−
π

2

Solution
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Part II (1 point):
Consider a dynamical system modeled as a lumped scalar linear system

d3x(t)

dt3
= u(t).

Here u(t) represents an input to the system, while x(t) represents its position at time t ∈ [0,∞).
Determine a second-order stabilizing controller which measures and processes x(t) as its input, and
determines the value for the input u(t) to the given system. Explain why your design works.

Solution:

It is clear by using Root-locus or Nyquist arguments that we need lead to stabilize the system. In
particular, two stable zeros are needed to provide the necessary lead. Thus, we choose as controller

C(s) =
(s + 1)2

(.1s + 1)2

We verify that the characteristic polynomial is

s3(.1s + 1)2 + (s + 1)2 = .01s5 + .2s4 + s3 + s2 + 2s + 1

= .01 × (s5 + 20s4 + 100s3 + 100s2 + 200s + 100).

Then, applying the Routh test we can readily verify that this polynomial has its roots in the left half
of the complex plane.

This problem has many solution – you need to justify your answer.

Solution
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Part III (1 point):

A physical system is modeled by a second order
differential equation

ÿ(t) = −ẏ(t) + u(t − τ)

where y(t) is the output, u(t) is the input, and τ
represents a time-delay measured in seconds. Thus,
the transfer function from

u(t − τ) to y(t)

is

G(s) =
1

s(s + 1)
.

frequency magnitude phase in degrees
1.1716 0.5541 -139.5176
1.4921 0.3731 -146.1702
1.8126 0.2665 -151.1152
2.1332 0.1990 -154.8834
2.4537 0.1538 -157.8266
2.7742 0.1222 -160.1776
3.0947 0.0994 -162.0928
3.4153 0.0823 -163.6798
3.7358 0.0692 -165.0143
4.0563 0.0590 -166.1511
4.3768 0.0509 -167.1302
4.6974 0.0443 -167.9820
5.0179 0.0389 -168.7294

You are given the magnitude and the phase of G(jω) for a range of frequencies between .1716 and
5.0179 [rad/sec] in the table above (and to the right). The system is controlled using negative feedback;
that is, the control input is proportional to the difference of an external reference signal r(t) and the
output y(t), namely

u(t) = K (r(t) − y(t)) ,

with K a gain factor which is now taken to be K = 10. Determine the range of values for the time
delay for which the closed loop system is stable.

Solution:

Clearly, when τ = 0 the closed loop system is stable: it is a second order system with characteristic
equation 1+ 10

s(s+1)
= 0, and this has no roots in the right half plane. This is easy to see. For instance,

the characteristic polynomial is s2 + s + 10 and has all coefficients positive, and since it is of degree
2 the roots are in the left half of the complex plane. You can of course compute the roots, or use the
Routh test. Either is straightforward.

Now, from the table we see that at ω = 3.0947 [rad/sec] the gain of 1/(s(s + 1)) is 0.0994 which
is approximately equal to 1/K for K = 10. Therefore, for K = 10, the gain cross-over frequency is
ω = 3.0947 [rad/sec] and the phase is −162.0928 in degrees. Thus, the phase margin for the closed
loop system is about 180o − 162o = 18o. Therefore, the system can tolerate a lag from the time-delay
that does not exceed this margin. Thus, the maximal time-delay is approximately,

τmax = 18π
180

1
3.0947

= 0.1 [sec]

Solution
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Part IV (1 point):
Consider four systems with the following transfer functions:

GA(s) =
20s + 400

s2 + 20s + 400
,

GB(s) =
200s − 400

s2 + 8s + 400
,

GC(s) =
2s + 4

s2 + 2s + 4
,

GD(s) =
−2s + 4

s2 + 0.8s + 4
.

You are required to match these with corresponding pole/zero plots, step responses, Bode plots, and
Nyquist plots shown in the next four pages. (E.g., GA(s) corresponds to the first pole-zero plot. Then
we should mark zp1 in the corresponding position as shown, etc.)

Transfer fn Pole-zero plot Step response Bode plot Nyquist plot

A zp1
B
C
D

Note that the Nyquist plots nq2 and nq4 are identical. In this case mark the possibilities in the above
table, and explain why these two plots are identical.

Solution:

Transfer fn Pole-zero plot Step response Bode plot Nyquist plot

A zp1 sr4 bd3 nq2 or nq3
B zp4 sr1 bd4 nq4
C zp2 sr2 bd2 nq2 or nq3
D zp3 sr3 bd1 nq1

The reason for the Nyquist plots being identical is that GA(s) = GC(s/10).

Solution
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Solution



PhD Preliminary Written Exam Problem 2 Page 6 of 8

November 2012 Controls

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

step response−plot sr4

Time (sec)

A
m

pl
itu

de

0 0.5 1
−10

−5

0

5

10

step response−plot sr1

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5
0

0.5

1

1.5

step response−plot sr2

Time (sec)

A
m

pl
itu

de

0 5 10 15
−1

0

1

2

step response−plot sr3

Time (sec)

A
m

pl
itu

de

Step responses

Solution
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Solution




