Ph.D. Preliminary Written Exam
April 12, 2013

Problem 8
Digital Design

This problems tests your knowledge of synthesizing combination and sequential logic, state machines, and switching circuits.

1. Representations of Boolean Functions [1.0 points]

For the function defined by the following truth table:

a	b	c	d	$f(a, b, c, d)$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(a) Give the Boolean expression corresponding to a minimal two-level AND-OR circuit (i.e., AND gates in the first level and an OR gate in the second level).
(b) Give the Boolean expression corresponding to a minimal two-level OR-NAND circuit (i.e., OR gates in the first level and a NAND gate in the second level).
(c) Give the Boolean expression corresponding to minimal two-level OR-AND circuit (i.e., OR gates in the first level and an AND gate in the second level).
(d) Give the Boolean expression corresponding to minimal two-level AND-NOR circuit (i.e., AND gates in the first level and a NOR gate in the second level).
(e) Given the Boolean expression corresponding to a minimal two-level AND-XOR circuit (i.e., AND gates in the first level and an exclusive-OR gate in the second level). Do not negate any of the variables in this representation.

Ph.D. Preliminary Written Exam
April 12, 2013

Problem 8
Digital Design
Page 2 of 4

Answer

(a)

$$
a b d+a b^{\prime} d^{\prime}+a c+a^{\prime} b^{\prime} d+b^{\prime} c
$$

(b)

$$
\left(\left(a^{\prime}+b^{\prime}+d^{\prime}\right)\left(a^{\prime}+b+d\right)\left(a^{\prime}+c^{\prime}\right)\left(a+b+d^{\prime}\right)\left(b+c^{\prime}\right)\right)^{\prime}
$$

(c)

$$
\left(a^{\prime}+b+c+d^{\prime}\right)\left(a+b^{\prime}\right)(a+c+d)\left(b^{\prime}+c+d\right)
$$

(d)

$$
\left(a b^{\prime} c^{\prime} d+a^{\prime} b+a^{\prime} c^{\prime} d^{\prime}+b c^{\prime} d^{\prime}\right)^{\prime}
$$

(e)

$$
a \oplus d \oplus c \oplus a b \oplus a c \oplus b d \oplus b c \oplus d c \oplus a b d \oplus b d c \oplus a b d c
$$

Ph.D. Preliminary Written Exam April 12, 2013

Problem 8
Digital Design

2. State Tables and Graphs [1.0 points]

A sequential circuit has two inputs $\left(X_{1}, X_{2}\right)$ and one output (Z). The output remains a constant value unless one of the following input sequences occurs:

- The input sequence $X_{1}, X_{2}=01,11$ causes the output to become 0 .
- The input sequence $X_{1}, X_{2}=10,11$ causes the output to become 1 .
- The input sequence $X_{1}, X_{2}=10,01$ causes the output to change value.

Assume that this is a Moore machine. Provide a state transition table and state graph for this circuit.

Answer

state	next state				
	X_{1}, X_{2}				
	00	01	10	11	
S_{0}	S_{0}	S_{1}	S_{2}	S_{0}	0
S_{1}	S_{0}	S_{1}	S_{0}	S_{0}	0
S_{2}	S_{0}	S_{3}	S_{2}	S_{3}	0
S_{3}	S_{3}	S_{4}	S_{5}	S_{3}	1
S_{4}	S_{3}	S_{4}	S_{3}	S_{0}	1
S_{5}	S_{3}	S_{0}	S_{5}	S_{3}	1

Figure 1: State Graph

Ph.D. Preliminary Written Exam April 12, 2013

Problem 8
Digital Design

3. Flip-Flop Input Equations [1.0 points]

Consider the following state table for a sequential circuit with input X and output Z.

state	next state		Z	
	$X=0$	$X=1$	$X=0$	$X=1$
S_{0}	S_{1}	S_{2}	0	0
S_{1}	S_{3}	S_{2}	0	0
S_{2}	S_{1}	S_{4}	0	0
S_{3}	S_{5}	S_{2}	0	0
S_{4}	S_{1}	S_{6}	0	0
S_{5}	S_{5}	S_{2}	1	0
S_{6}	S_{1}	S_{6}	0	1

Derive flip-flop input equations for an implementation of the circuit with:
(a) D flip-flops
(b) J-K flip-flops

Answer

(a) Let's use the following state assignment:

state	next state	
	$X=0$	$X=1$
$a b c$	$a^{+} b^{+} c^{+}$	$a^{+} b^{+} c^{+}$
a' b' c'	001	010
$a^{\prime} b^{\prime} \mathrm{c}$	011	010
$a^{\prime} \mathrm{b} \mathrm{c}^{\prime}$	001	100
$a^{\prime} \mathrm{b}$ c	101	010
a b' c'	001	110
a b' c	101	010
a b c'	001	110
abc	x x x	$\mathrm{x} \times \mathrm{x}$

The input equations for D flip-flops D_{a}, D_{b} and D_{c} are:

$$
\begin{aligned}
D_{a} & =\left(x c^{\prime}+x^{\prime} c\right)(a+b) \\
D_{b} & =a^{\prime} b^{\prime} c+x\left(a+b^{\prime}+c\right) \\
D_{c} & =x^{\prime}
\end{aligned}
$$

(b) Using the same state assignment, the input equations for J-K flip-flops are:

Ph.D. Preliminary Written Exam April 12, 2013

Problem 8
Digital Design
Page 5 of 4

$$
\begin{aligned}
J_{a} & =b c^{\prime} x+b c x^{\prime} \\
K_{a} & =a c^{\prime} x^{\prime}+a c x \\
J_{b} & =a^{\prime} b^{\prime} x+a^{\prime} c x^{\prime}+a b^{\prime} x \\
K_{b} & =b c^{\prime} x^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b x^{\prime} \\
J_{c} & =c^{\prime} x^{\prime} \\
K_{c} & =c x
\end{aligned}
$$

Ph.D. Preliminary Written Exam April 12, 2013

Problem 8
Digital Design

4. Switching Circuit [1.0 points]

For the switching circuit in Figure 2, write the Boolean function implemented between S and D. Each switch is closed if the corresponding variable is 1 and open if it 0 . The function evaluates to 1 if there is a closed path from S to D and 0 otherwise.

Figure 2: A switching circuit.

Answer

$$
\begin{aligned}
a & =a_{1} a_{4}+a_{2} a_{5}+a_{1} a_{3} a_{5}+a_{2} a_{3} a_{4} \\
b & =b_{1} b_{4}+b_{2} b_{5}+b_{1} b_{3} b_{5}+b_{2} b_{3} b_{4} \\
c & =c_{1} c_{4}+c_{2} c_{5}+c_{1} c_{3} c_{5}+c_{2} c_{3} c_{4} \\
d & =d_{1} d_{4}+d_{2} d_{5}+d_{1} d_{3} d_{5}+d_{2} d_{3} d_{4} \\
e & =e_{1} e_{4}+e_{2} e_{5}+e_{1} e_{3} e_{5}+e_{2} e_{3} e_{4} \\
f_{S-D} & =a e(b+c+d)
\end{aligned}
$$

