This problems tests your knowledge of synthesizing combination and sequential logic, state machines, and switching circuits.

1. Representations of Boolean Functions [1.0 points]

For the function defined by the following truth table:

a	b	c	d	f(a, b, c, d)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- (a) Give the Boolean expression corresponding to a minimal two-level AND-OR circuit (i.e., AND gates in the first level and an OR gate in the second level).
- (b) Give the Boolean expression corresponding to a minimal two-level OR-NAND circuit (i.e., OR gates in the first level and a NAND gate in the second level).
- (c) Give the Boolean expression corresponding to minimal two-level OR-AND circuit (i.e., OR gates in the first level and an AND gate in the second level).
- (d) Give the Boolean expression corresponding to minimal two-level AND-NOR circuit (i.e., AND gates in the first level and a NOR gate in the second level).
- (e) Given the Boolean expression corresponding to a minimal two-level AND-XOR circuit (i.e., AND gates in the first level and an exclusive-OR gate in the second level). Do *not* negate any of the variables in this representation.

Answer	
(a)	abd + ab'd' + ac + a'b'd + b'c
(b)	((a'+b'+d')(a'+b+d)(a'+c')(a+b+d')(b+c'))'
(c)	(a'+b+c+d')(a+b')(a+c+d)(b'+c+d)
(d)	(ab'c'd + a'b + a'c'd' + bc'd')'
(e)	$a \oplus d \oplus c \oplus ab \oplus ac \oplus bd \oplus bc \oplus dc \oplus abd \oplus bdc \oplus abdc$

2. State Tables and Graphs [1.0 points]

A sequential circuit has two inputs (X_1, X_2) and one output (Z). The output remains a constant value unless one of the following input sequences occurs:

- The input sequence $X_1, X_2 = 01, 11$ causes the output to become 0.
- The input sequence $X_1, X_2 = 10, 11$ causes the output to become 1.
- The input sequence $X_1, X_2 = 10, 01$ causes the output to change value.

Assume that this is a Moore machine. Provide a state transition table and state graph for this circuit.

Answer

state	next state			Z	
	X_1, X_2				
	00	01	10	11	
S_0	S_0	S_1	S_2	S_0	0
S_1	S_0	S_1	S_0	S_0	0
S_2	S_0	S_3	S_2	S_3	0
S_3	S_3	S_4	S_5	S_3	1
S_4	S_3	S_4	S_3	S_0	1
S_5	S_3	S_0	S_5	S_3	1

Figure 1: State Graph

3. Flip-Flop Input Equations [1.0 points]

Consider the following state table for a sequential circuit with input X and output Z.

state	next	state	Z	
	X = 0	X = 1	X = 0	X = 1
S_0	S_1	S_2	0	0
S_1	S_3	S_2	0	0
S_2	S_1	S_4	0	0
S_3	S_5	S_2	0	0
S_4	S_1	S_6	0	0
S_5	S_5	S_2	1	0
S_6	S_1	S_6	0	1

Derive flip-flop input equations for an implementation of the circuit with:

- (a) D flip-flops
- (b) J-K flip-flops

Answer

(a) Let's use the following state assignment:

state	next state		
	X = 0	X = 1	
abc	$a^+b^+c^+$	$a^+b^+c^+$	
a' b' c'	001	$0\ 1\ 0$	
a' b' c	011	$0\ 1\ 0$	
a' b c'	$0 \ 0 \ 1$	$1 \ 0 \ 0$	
a' b c	101	$0 \ 1 \ 0$	
a b' c'	$0 \ 0 \ 1$	$1 \ 1 \ 0$	
a b' c	101	$0 \ 1 \ 0$	
a b c'	$0 \ 0 \ 1$	$1 \ 1 \ 0$	
a b c	x x x	ххх	

The input equations for D flip-flops D_a, D_b and D_c are:

$$D_a = (xc' + x'c)(a + b)$$

$$D_b = a'b'c + x(a + b' + c)$$

$$D_c = x'$$

(b) Using the same state assignment, the input equations for J-K flip-flops are:

Ph.D. Preliminary Written Exam April 12, 2013

$$J_a = bc'x + bcx'$$

$$K_a = ac'x' + acx$$

$$J_b = a'b'x + a'cx' + ab'x$$

$$K_b = bc'x' + a'bc' + a'bx'$$

$$J_c = c'x'$$

$$K_c = cx$$

4. Switching Circuit [1.0 points]

For the switching circuit in Figure 2, write the Boolean function implemented between S and D. Each switch is closed if the corresponding variable is 1 and open if it 0. The function evaluates to 1 if there is a closed path from S to D and 0 otherwise.

Figure 2: A switching circuit.

Answer

$$\begin{array}{rcl} a &=& a_1a_4 + a_2a_5 + a_1a_3a_5 + a_2a_3a_4 \\ b &=& b_1b_4 + b_2b_5 + b_1b_3b_5 + b_2b_3b_4 \\ c &=& c_1c_4 + c_2c_5 + c_1c_3c_5 + c_2c_3c_4 \\ d &=& d_1d_4 + d_2d_5 + d_1d_3d_5 + d_2d_3d_4 \\ e &=& e_1e_4 + e_2e_5 + e_1e_3e_5 + e_2e_3e_4 \\ f_{S-D} &=& ae(b+c+d) \end{array}$$