Qualifying Exam Spring 2012: Transmission Lines, Fields and Waves

Note that $\epsilon_0 = 8.8542 \cdot 10^{-12}$ F/m, and $\mu_0 = 4\pi \cdot 10^{-7}$ H/m.

- 1. A 50Ω transmission line at 100 MHz, with the transmission line velocity 1×10^8 m/s is terminated in a load 40-j $30~\Omega$.
 - (a) What is the voltage standing wave ratio of this load? (0.5 pionts)
 - (b) Design a single shunt short circuit stub matching circuit using the Smith Chart. (1.5 points)
 - (c) What is the input impedance at stub terminals of the load and the stub if the frequency drops to 90 MHz? Assume the line impedance remains at 50 Ω , the load impedance becomes 40-j33.3 Ω , and the stub length and distance from the stub to the load remain the same as obtained in the (b) above. (2.0 points)

Smith Chart

