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Confinement Condition for a Gaussian Beam

Consider a Gaussian beam whose width (beam radius) #(z) and wavefront radius of
curvature R(z) are given by
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Beam waist

A Gaussian beam reflected from a spherical mirror will retrace the incident beam if the
radius of curvature of its wavefront is the same as that of the mirror radius. Let’s fit a
Gaussian beam to two mirrors separated by a distance d, as shown below. Their radii of
curvature are R; and R,. Both mirrors are taken to be concave (i.e. Ry < 0 and R; < 0)
The center of the beam is assumed to be at the origin z = 0; mirrors R; and R, are located
at positions z; , and z, =z; + d

Prove the following relations:

*Pay careful attention to the sign of R(z): A concave mirror has a negative radius (i.e. Ry
<0 and R; < 0). But the beam radius of curvature is defined to be positive for z > 0 (right
mirror) and negative for z < 0, meaning Ry = R(z;), -Ra = R(z2)
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In order that the above solution represents a Gaussian beam, zo must be real. Using that
condition, derive the following condition for the confinement of a Gaussian beam:
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