Confinement Condition for a Gaussian Beam

Consider a Gaussian beam whose width (beam radius) W(z) and wavefront radius of curvature R(z) are given by

$$W(z) = W_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$R(z) = z \left[1 + \left(\frac{z_0}{z}\right)^2\right]$$
Beam waist
$$w_0$$

$$z = 0$$

A Gaussian beam reflected from a spherical mirror will retrace the incident beam if the radius of curvature of its wavefront is the same as that of the mirror radius. Let's fit a Gaussian beam to two mirrors separated by a distance d, as shown below. Their radii of curvature are R_1 and R_2 . Both mirrors are taken to be concave (i.e. $R_1 < 0$ and $R_2 < 0$) The center of the beam is assumed to be at the origin z = 0; mirrors R_1 and R_2 are located at positions z_1 , and $z_2 = z_1 + d$

Prove the following relations:

*Pay careful attention to the sign of R(z): A concave mirror has a negative radius (i.e. $\mathbf{R_1} < \mathbf{0}$ and $\mathbf{R_2} < \mathbf{0}$). But the beam radius of curvature is defined to be positive for z > 0 (right mirror) and negative for z < 0, meaning $\mathbf{R_1} = R(z_1)$, $-\mathbf{R_2} = R(z_2)$

(a) (1 point)
$$z_1 = \frac{-d(R_2 + d)}{R_2 + R_1 + 2d}$$
 (b) (1 point)
$$z_0^2 = \frac{-d(R_1 + d)(R_2 + d)(R_1 + R_2 + d)}{(R_2 + R_1 + 2d)^2}$$

In order that the above solution represents a Gaussian beam, z_0 must be real. Using that condition, derive the following condition for the confinement of a Gaussian beam:

(c) (2 points)
$$0 \le \left(1 + \frac{d}{R_1}\right) \left(1 + \frac{d}{R_2}\right) \le 1$$