1) $\left[7\right.$ points total] A finite sequence $b[n]$ is such that its z-Transform $B(z)=\sum_{n=-\infty}^{\infty} b[n] z^{-n}$ satisfies

$$
B(z)+B(-z)=2 c
$$

where $c \neq 0$ is a real constant.
a) [5 points] What constraints does this place on the signal $b[n]$? In particular, what can be said about $b[n$] for the following cases?

- $n=0$,
- n odd,
- n even $(n \neq 0)$
b) [2 points] Give one example of such a sequence $b[n]$.

2) [20 points total] Consider a real valued sequence $x[n]$ whose Fourier transform $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$ is known to satisfy

$$
X\left(e^{j \omega}\right)=0, \quad \text { for } \frac{\pi}{4} \leq|\omega| \leq \pi
$$

One value of the sequence $x[n]$ may be corrupted; we would like to devise a strategy to recover it.
Let $g[n]$ denote the corrupted signal, which is real-valued, and let n_{0} denote the (unknown) location of the corrupted value. Thus, we can write

$$
g[n]=x[n], \quad n \neq n_{0}
$$

and

$$
g[n]=x[n]+a \delta\left[n-n_{0}\right]
$$

for some real-valued a. Our recovery approach begins by filtering $g[n]$ with an ideal high pass filter $h[n]$ with cutoff frequency $\omega_{c}=\pi / 2$.
a) [5 points] Find an expression for the entries of the filter $h[n]$. (You might choose to use the Fourier inversion formula: $h[n]=\frac{1}{2 \pi} \int_{2 \pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega$.)
b) $[2$ points $]$ Let $y[n]=g[n] * h[n]=\left(g[n]=x[n]+a \delta\left[n-n_{0}\right]\right) * h[n]$. Use your expression from part (a) to find a simple expression for $y[n]$.
c) [5 points] Explain how you could identify n_{0} by examining the values of the filtered sequence $y[n]$. (Hint: It may help to sketch $y[n]$.)
d) [3 points] Find a simple expression for the unknown amplitude a in terms of the original sequence $g[n]$. (Your answer will be a function of n_{0}, which you would be able to identify following the procedure you describe in part (c)).
e) [5 points] Find a (simple) expression for the original sequence $x[n]$ in terms of the quantities $g[n], y[n]$, and the (now) known n_{0}.
3) [13 points total] Suppose we wish to compute the autocorrelation function of an upsampled real signal using the system below

It was suggested that this can be accomplished by a different system, for an appropriate $H\left(e^{j \omega}\right)$

a) [5 points] Find an expression relating the Fourier transform of $\phi_{i}[m]$, denoted $\Phi_{1}\left(e^{j \omega}\right)$, to the Fourier transform of $x_{i}[n]$, denoted $X_{i}\left(e^{j \omega}\right)$.
b) $\left[3\right.$ points] How does the bandwidth of $\Phi_{1}\left(e^{j \omega}\right)$ compare with the bandwidth of $X_{i}\left(e^{j \omega}\right)$?
c) [5 points] What should $H\left(e^{j \omega}\right)$ be to ensure that the outputs of the two systems are the same (i.e., to ensure that $\phi_{3}[m]=\phi_{1}[m]$ for all $\left.m\right)$?

