a) For a sequence $b[n]$ with z-Transform $B(z)$ and $\mathrm{ROC}=R_{b}$, the multiplication property of the z-Transform states that

$$
a^{n} b[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} B(x / a)
$$

where the ROC of $a^{n} b[n]$ is $|a| R_{b}$. Here $a=-1$, implying that the ROC of $B(z)$ and $B(-z)$ are the same. At any rate, since the problem states that $b[n]$ is a finite sequence, we know that the ROC of $B(z)$ is the entire z-plane, except possibly $z=0$ or $z=\infty$.

Taking the inverse z-Transform of each side, it follows that

$$
b[n]+(-1)^{n} b[n]=2 c \delta[n] .
$$

When $n=0$, this implies that $2 b[0]=2 c$, or $b[0]=c$. When n is not equal to zero but otherwise even, we have $b[n]+b[n]=0$, implying that $b[n]=0$. Finally, for n odd, the condition provides no information about $b[n]$, so we conclude that $b[n]$ may be arbitrary for n odd.
b) There are many possibilities, the simplest of which is $b[n]=c \delta[n]$.
2)
a) We can find $h[n]$ using Fourier Transform properties. First we recall (or compute from the definition) that an ideal low-pass filter $\ell[n]$ with cutoff frequency ω_{c} corresponds to the FT pair:

$$
\frac{\sin \left(\omega_{c} n\right)}{\pi n}=\ell[n] \stackrel{\mathcal{F}}{\longleftrightarrow} L\left(e^{j \omega}\right)= \begin{cases}1, & |\omega|<\omega_{c}, \\ 0, & \omega_{c}<|\omega|<\pi\end{cases}
$$

Further, we can express the highpass filter $h[n]$ as a frequency shifted version of this lowpass filter. That is, if we take an ideal lowpass filter with cutoff frequency $\omega_{c}=\pi / 2$ and shift it in frequency (to the right or left) by π we get $h[n]$. Since

$$
e^{j \omega_{0} n} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\omega-\omega_{0}\right)}\right),
$$

we conclude that

$$
h[n]=e^{j \pi n} \frac{\sin (\pi n / 2)}{\pi n}=(-1)^{n} \frac{\sin (\pi n / 2)}{\pi n}
$$

b) Given the expression for $h[n]$ computed in part (a), we see that

$$
y[n]=a(-1)^{\left(n-n_{0}\right)} \frac{\sin \left(\pi\left(n-n_{0}\right) / 2\right)}{\pi\left(n-n_{0}\right)}
$$

c) Note first that

$$
h[n]= \begin{cases}\frac{a}{2}, & n=0 \\ 0, & \text { even } n \neq 0 \\ \frac{a(-1)^{(3 n-1) / 2}}{\pi n}, & n \text { odd }\end{cases}
$$

and in particular, the only three consecutive nonzero values occur for $n=\{-1,0,1\}$. Now, since $y[n]$ is just a time-shifted version of $h[n]$, we can just search for three consecutive nonzero values of $y[n]$. The location of the middle nonzero is n_{0}.
d) Following the discussion above, we have $a=2 y\left[n_{0}\right]$.
e) Given that $g[n]=x[n]+a \delta\left[n-n_{0}\right]$, we have that $x[n]=g[n]-2 y\left[n_{0}\right] \delta\left[n-n_{0}\right]$.
a) It is easy to see that $\phi_{1}[m]=x_{i}[m] * x_{i}[-m]$, and so $\Phi_{1}\left(e^{j \omega}\right)=X_{i}\left(e^{j \omega}\right) X_{i}\left(e^{-j \omega}\right)$.
b) Since $x[n]$ is real, so will be $x_{i}[n]$. Thus, the magnitude spectrum of its Fourier Transform is symmetric in ω, implying that the bandwidth of $\Phi_{1}\left(e^{j \omega}\right)$ is the same as the bandwidth of $X_{i}\left(e^{j \omega}\right)$.
c) The act of upsampling a discrete sequence by an integer factor L, followed by filtering using an ideal lowpass filter with cutoff frequency π / L, amounts to compressing the spectrum of the sequence in the frequency domain by a factor of L. Since a sequence and its corresponding autocorrelation sequence have the same bandwidth, we can interchange the order of the autocorrelation block with the upsampling/filtering block.

Thus, $H\left(e^{j \omega}\right)$ corresponds to an ideal lowpass filter with cutoff frequency π / L.

