
PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 1 of 4

a [Pipelined Performance] (0.75pts) Three interns, α, β, and θ are in charge of performance characteriza-

tion of the MN-4363 processor, which represents a basic MIPS implementation. First, all tried to estimate the

average CPI (cycles per instruction). To this end, for a benchmarking program, all relied on the ratio of two

measurements: the total number of cycles it took to execute the program
the number of instructions = C

I .

• α counted the number of instructions fetched to estimate I.

• β counted the number of instructions issued to estimate I.

• θ counted the number of instructions retired to estimate I.

Note: I(nstruction)F(etch)-I(nstruction)D(ecode)-EX(ecute)-MEM(ory)-W(rite)B(ack) constitute the 5 pipeline stages. An

instruction is “issued” as it moves from ID to EX; and “retired” as it leaves WB. Recall that branches can earliest be resolved

at ID.

a-1 Whose CPI estimation you think is the most accurate? Consider two cases: (i) if branch prediction is imple-

mented; (ii) if branch prediction is not implemented.

a-2 How would the 3 estimates compare? How would each capture the impact of control flow hazards (assum-

ing that branch prediction is implemented)? Consider different pipeline stages a branch can get resolved

at.

a-3 Explain the implications of the three approaches under forwarding.

1



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 2 of 4

b [Pipelined Execution] (1pt) α, the infamous architect of the MN-4363 processor – a pipelined implementation

of the basic MIPS ISA, wants to implement forwarding from EX(ecute) and MEM(ory) stages to EX. To this end

he connected

• The inputs of EXMEM register to the inputs of the IDEX register.

• The inputs of MEMWB register to the inputs of the IDEX register.

He added muxes at the inputs of the IDEX register to control where the inputs to the EX stage should be coming

from – i.e. I(nstruction)D(ecode) stage, forward from (the outputs of) EX, or forward from MEM. He claims that

he will be able to cover any dependency by inclusion of these two forwarding paths.

Would this implementation work? Explain your answer considering clocking of pipeline registers.

Note: I(nstruction)F(etch)-I(nstruction)D(ecode)-EX(ecute)-MEM(ory)-W(rite)B(ack) constitute the 5 pipeline stages. The

pipeline register between two stages is named by concatenating the acronyms for the preceding and succeeding pipeline

stages. I.e. IDEX is the register between ID and EX stages; EXMEM, between EX and MEM; MEMWB, between MEM

and WB. As opposed to α’s suggestion, in a classic MIPS implementation, connecting the outputs of EXMEM to the output

of IDEX (over muxes) takes care of forwarding from EX to EX. In a classic MIPS implementation, connecting the outputs of

MEMWB to the output of IDEX (over muxes) takes care of forwarding from MEM to EX. The control inputs of the muxes

are set to trigger forwarding as necessary.

2



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 3 of 4

c [Memory] (1pt) Your labmate, α, is in charge of the memory hierarchy design of the MN-4363 processor.

c-1 α claims that a write-through cache can be made to perform very similarly to a write-back cache if enhanced

with a write buffer. If the write buffer is large enough, no stalls would be observed as a write-through cache

processes a write hit.

• Explain how a write buffer can help.

• Explain whether α’s observation is correct.

c-2 According to α, a write-through policy should be preferred for faster operation, since a write-through cache

can handle the write and the tag check in parallel (which is not the case for a write-back cache).

• Is α correct that a write-back cache cannot handle the actual write and the tag check in parallel? Explain.

• Is α’s insight about write-through caches correct? Explain.

3



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 4 of 4

d [Quantitative Analysis] (1pt) Your class-mate θ’s study on usage of high-level language constructs suggests

that procedure calls are one of the most expensive operations. He came up with an ISA which reduces the loads

and stores normally associated with procedure calls and returns. The first thing he did was run some experiments

with and without this optimization. His experiments deployed the same state-of-the-art optimizing compiler that

will be used with either version of the computer. These experiments revealed the following information: (i) The

clock cycle time of the optimized version is 5% lower than the unoptimized version. (ii) Thirty percent of the

instructions in the unoptimized version are loads or stores. (iii) The optimized version executes two-thirds as

many loads and stores as the unoptimized version. For all other instructions the dynamic execution counts are

unchanged. (iv) Every instruction (including load and store) in the unoptimized version takes one clock cycle. (v)

Due to the optimization, the procedure call and return instructions take one extra cycle in the optimized version,

and these instructions account for 5% of total instruction count in the optimized version.

Is θ’s optimization working? Justify your answer.

4


