
PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 1 of 5

a [Pipelined Performance] (1pt) Three interns, α, β, and θ are in charge of performance characterization of

the MN-4363 processor, which represents a basic MIPS implementation. First, all tried to estimate the average

CPI (cycles per instruction). To this end, for a benchmarking program, all relied on the ratio of two measurements:

the total number of cycles it took to execute the program
the number of instructions = C

I .

• α counted the number of instructions fetched to estimate I.

• β counted the number of instructions issued to estimate I.

• θ counted the number of instructions retired to estimate I.

Note: I(nstruction)F(etch)-I(nstruction)D(ecode)-EX(ecute)-MEM(ory)-W(rite)B(ack) constitute the 5 pipeline stages. An

instruction is “issued” as it moves from ID to EX; and “retired” as it leaves WB. Recall that branches can earliest be resolved

at ID.

a-1 Whose CPI estimation you think is the most accurate? Consider two cases: (i) if branch prediction is imple-

mented; (ii) if branch prediction is not implemented.

The safest approach would be θ’s, i.e. counting the number of instructions retired over the entire execution

time (in cycles) of the workload mix. The ratio of the cycle count and the instruction count would render

the average CPI. The cycle count would already include all hazard-induced stall cycles, while the retired

instruction count would exclude potential noise due to nops or instructions on the mispredicted path of

branches.

(i) Since there is no guarantee for each fetched and issued instruction to contribute to actual computation as

long as the instruction follows a to-be-resolved branch in program order, α and β’s approaches may lead to

under-estimates for the average CPI. The difference in I estimates would decrease as the accuracy of branch

prediction increases.

(ii) If the processor excludes branch prediction, all three approaches in counting the total number of instruc-

tions would be equivalent (excluding other potential sources of speculative execution). [0.25pts]

a-2 How would the 3 estimates compare? How would each capture the impact of control flow hazards (assum-

ing that branch prediction is implemented)? Consider different pipeline stages a branch can get resolved at.

Fetched vs. issued vs. retired count under MIPS: Even if we rely on branch prediction, branches can earliest be

resolved at decode. Thus, fetched count may exceed retired count. If branches are resolved at decode, issued

count becomes equivalent to retired count, since in this case, only one instruction following the branch can

1



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 2 of 5

be fetched at most before the branch outcome gets resolved. On the other hand, if branches are resolved at

EX or later stages, issued count may exceed retired count (in this case, instructions on the mispredicted path

would be able to get issued before the branch gets resolved); but would not necessarily be equivalent to the

fetched count (since fetched instructions on the mispredicted path may get flushed upon the resolution of

the branch before being issued). [0.25pts]

a-3 Explain the implications of the three approaches under forwarding.

Impact of forwarding: Forwarding reduces the number of stall cycles due to data hazards. The cycle count

captures this effect. Hence, under forwarding (for all instructions on the correct path), the instruction count

fetched, issued, and retired would all be the same. If, as in classic MIPS, EX is where a branch can latest

be resolved, and EX represents the main destination for forwarding, forwarding wouldn’t help instructions

on the mispredicted path – which all would be residing in predecessor stages of EX as the branch is getting

resolved in EX. [0.25pts]

2



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 3 of 5

b [Pipelined Execution] (1pt) α, the infamous architect of the MN-4363 processor – a pipelined implementation

of the basic MIPS ISA, wants to implement forwarding from EX(ecute) and MEM(ory) stages to EX. To this end

he connected

• The inputs of EXMEM register to the inputs of the IDEX register.

• The inputs of MEMWB register to the inputs of the IDEX register.

He added muxes at the inputs of the IDEX register to control where the inputs to the EX stage should be coming

from – i.e. I(nstruction)D(ecode) stage, forward from (the outputs of) EX, or forward from MEM. He claims that

he will be able to cover any dependency by inclusion of these two forwarding paths.

Would this implementation work? Explain your answer considering clocking of pipeline registers.

Note: I(nstruction)F(etch)-I(nstruction)D(ecode)-EX(ecute)-MEM(ory)-W(rite)B(ack) constitute the 5 pipeline stages. The

pipeline register between two stages is named by concatenating the acronyms for the preceding and succeeding pipeline

stages. I.e. IDEX is the register between ID and EX stages; EXMEM, between EX and MEM; MEMWB, between MEM

and WB. As opposed to α’s suggestion, in a classic MIPS implementation, connecting the outputs of EXMEM to the output

of IDEX (over muxes) takes care of forwarding from EX to EX. In a classic MIPS implementation, connecting the outputs of

MEMWB to the output of IDEX (over muxes) takes care of forwarding from MEM to EX. The control inputs of the muxes

are set to trigger forwarding as necessary.

EX to EX: α is forwarding from the output of the combinational EX logic to the inputs of the pipeline register

feeding the EX logic. Assume that two dependent instructions are issued back to back (a (P)roducer-(C)onsumer

pair), and at clock cycle t, P is in EX, and C is in ID. The data to be forwarded from P to C will be ready at the end

of cycle t, or at the beginning of cycle t+1. To enforce correct operation, as C enters EX at the beginning of cycle

t+1, we should have the forwarded value ready at the inputs of EX logic. At the beginning of cycle t+1, IDEX may

capture the value to be forwarded indeed. However the forwarded value is the output of combinational EX logic

which is sensitive to changes at the input, i.e. IDEX. Eventually, IDEX may get the wrong value. In the classic

implementation, since a register output is forwarded (as opposed to the output of a combinational circuit), the

forwarded value remains stable.

A similar explanation holds for forwarding from MEM to EX. [1pt]

3



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 4 of 5

c [Memory] (1pt) Your labmate, α, is in charge of the memory hierarchy design of the MN-4363 processor.

c-1 α claims that a write-through cache can be made to perform very similarly to a write-back cache if enhanced

with a write buffer. If the write buffer is large enough, no stalls would be observed as a write-through cache

processes a write hit.

• Explain how a write buffer can help.

• Explain whether α’s observation is correct.

A write buffer can help in hiding the performance overhead induced by the updates of the copies residing in

lower levels, upon a write hit in a write-through cache. The idea is queuing the lines to be updated in a write

buffer (of n entries) and resuming execution (following the write – store in program order) as the entries of the

write buffer are processed one by one. In this manner, the updates to the lower levels proceed simultaneously

with execution of instructions following the store in program order (as long as these instructions do not depend

on a store in the write buffer).

A restriction to α’s observation is if the number of write requests generated by the processor per second exceeds

the number of updates that can be serviced by the lower levels per second significantly. If the gap between

processor speed in generating writes and the update speed is huge, increasing the write buffer size wouldn’t

prevent stalls – even a large buffer will saturate after one point. [0.5pts]

c-2 According to α, a write-through policy should be preferred for faster operation, since a write-through cache

can handle the write and the tag check in parallel (which is not the case for a write-back cache).

• Is α correct that a write-back cache cannot handle the actual write and the tag check in parallel? Explain.

• Is α’s insight about write-through caches correct? Explain.

α is correct: In a write-back cache, if the tag comparison and the actual write are conducted in parallel, and the

corresponding line is dirty, we may loose the only existing valid (up-to-date) copy of this line. In a write-through

cache, such an overwrite would be safe, since last time the write-through cache was updated, the memory already

got the most up-to-date copy.

While write-through caches are simpler to implement to accommodate the parallel tag check, the update overhead

may wipe out the corresponding performance benefits. [0.5pts]

4



PhD Preliminary Written Exam
Spring 2014

Problem # 10
Computer Architecture Page 5 of 5

d [Quantitative Analysis] (1pt) Your class-mate θ’s study on usage of high-level language constructs suggests

that procedure calls are one of the most expensive operations. He came up with an ISA which reduces the loads

and stores normally associated with procedure calls and returns. The first thing he did was run some experiments

with and without this optimization. His experiments deployed the same state-of-the-art optimizing compiler that

will be used with either version of the computer. These experiments revealed the following information: (i) The

clock cycle time of the optimized version is 5% lower than the unoptimized version. (ii) Thirty percent of the

instructions in the unoptimized version are loads or stores. (iii) The optimized version executes two-thirds as

many loads and stores as the unoptimized version. For all other instructions the dynamic execution counts are

unchanged. (iv) Every instruction (including load and store) in the unoptimized version takes one clock cycle. (v)

Due to the optimization, the procedure call and return instructions take one extra cycle in the optimized version,

and these instructions account for 5% of total instruction count in the optimized version.

Is θ’s optimization working? Justify your answer.

Execution times (E) to be compared: I(nstruction) C(ount)× CPI × clk (period).

Eunoptimized = ICunoptimized × CPIunoptimized × clkunoptimized = ICunoptimized × 1× clkunoptimized.

Eoptimized = ICoptimized × CPIoptimized × clkoptimized. 30% of instructions are load/store, and the optimized version

executes 2/3 of them; hence, the optimized version executes 30% × 1/3 = 10% less instructions. Eoptimized =

(0.9× ICunoptimized)× (0.95× 1 + 0.05× 2)× (0.95× clkunoptimized).

=⇒ Eoptimized ≈ 0.89775× Eunoptimized. The optimization is working.

0.1pts for comparing execution times. 0.3pts for each correct component of calculation: IC, CPI and clk.

5


