Communications
(1) (20 points) Suppose, you want to transmit over a channel characterized by an additive noise Z, such that the probability density function of Z is given by

$$
f_{Z}(z)=\left\{\begin{array}{l}
(2-|z|) / 4, \quad-2 \leq z \leq 2 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

You may transmit either a +1 or a -1 over this channel, and these two options are equally likely. This means, if you transmit $X \in\{+1,-1\}$, then you receive $Y=X+Z$.
a. What is the optimal strategy to recover an estimate of X from Y ?
b. What is the probability of error in the above estimate? 3
c. Suppose you send the following three: X_{1}, X_{2} and $X_{1} X_{2}$, where $X_{1}, X_{2} \in\{+1,-1\}$. What is the probability that the errors remain unnoticed (Hint: Any one error will be noticed)?
Consider the following protocol to recover X :

$$
\hat{X}=\left\{\begin{array}{l}
-1 \text { if } Y \leq-0.5 \\
+1 \text { if } Y \geq 0.5 \\
\text { Retransmit otherwise }
\end{array}\right.
$$

d. What is the average number of transmission that has to be performed then to transmit a vector of +1 and -1 of length 100 ?
e. What is the probability for any symbol (+1 or -1) to be wrongly estimated?

Solution

a. The optimal strategy is the maximum a-posteriori or MAP, where you simply check: given Y, which is more likely transmission, +1 or -1 . Note that, +1 an -1 are equally likely, unconditionally. When X is -1 , the probability that Y is positive is equal to $P(Z>$ $1)<1 / 2$. Hence the optimal strategy is: when Y is positive declare $X=+1$, when Y is

Figure 1. $f_{Z}(z)$
negative declare $X=-1$ and declare either if $Y=0$.
b. From the symmetry of the distribution of Z, we can say: Probability of error $P(X=$ $-1) P(Z>1)+P(X=1) P(Z<-1)=P(Z>1)=0.125$.
c. The errors will remain unnoticed only when exactly two of the three transmission $\left(X_{1}, X_{2}, X_{1} X_{2}\right)$ are wrongly recovered. The probability of that happening is $\binom{3}{2} \cdot 0.125^{2}$. $0.875=0.041$.
d. Note that, the probabilities of $X=+1$ and $X=-1$ are equal and the distribution of Z is symmetric. When $X=-1$, probability of retransmission for a symbol is $P(0.5<$
$Z<1.5)=0.25$. Similarly, when $X=+1$, probability of retransmission for a symbol is $P(-1.5<Z<-0.5)=0.25$. Hence, the probability that a symbol is recovered (possibly erroneously) after i transmissions is $0.25^{i-1} \cdot 0.75$. Hence, average number of transmissions for each symbol is $\sum_{i=1}^{\infty} i \cdot 0.25^{i-1} \cdot 0.75=4 / 3$. Hence $100 * 4 / 3=133.33$ transmissions on average will be required.
3. When $X=-1$, probability that a symbol is incorrectly recovered in one transmission is $P(Z>1.5)=0.03125$. Same is true when $X=+1$. Hence, probability of error $=\sum_{i=1}^{\infty} 0.25^{i-1} \cdot 0.03125=0.04167$.

PhD Preliminary Written Exam Spring 2014

Problem 1
Communications
(2) (20 points) Suppose the signal $f(t)$ is going to be transmitted with double-sideband (DSB-

SC) amplitude modulation (AM). That is, the signal $f(t) \cos \left(2.4 \pi \times 10^{6} t\right)$ is transmitted.
a. What can be the maximum bandwidth of $f(t)$ for distortionless reception?
b. If you are allowed to transmit only within the band of 1 MHz to 1.4 MHz , what is the maximum bandwidth of $f(t)$ that you can support?
At the receiver end, you receive a phase-shifted version because of asynchronous communication:

$$
X(t)=f(t) \cos \left(2.4 \pi \times 10^{6} t+\Theta\right)
$$

where Θ is a random phase sampled from the uniform distribution in $[0,2 \pi]$.
c. Find expected value and autocorrelation function of $X(t)$.
d. Is $X(t)$ a stationary process?

Suppose, $f(t)$ is band-limited according to part \mathbf{b}. above. Let us sample $f(t)$ at rate 25% above the Nyquist rate and use PCM (pulse-coded modulation) to transmit this signal.
e. What is the sampling rate?
f. Let $|f(t)| \leq 100$ and each sample drawn above is quantized into levels of size 0.25. Determine the number of binary pulses required to encode each sample?
g. Determine the bits per second transmission rate and the minimum bandwidth required to transmit the signal.

Solution

a. Carrier frequency $f_{c}=1.2 \mathrm{MHz}$. If $f(t)$ is band-limited in $[-B, B]$ then, $B<$ 1.2 MHz .
b. Clearly $1.2-1=1.4-1.2=0.2 \mathrm{MHz}=200 \mathrm{KHz}$.
c. $\mathbb{E} X(t)=f(t) \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \left(2 \pi f_{c} t+\theta\right) d \theta=0$.

$$
\begin{aligned}
\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] & =f\left(t_{1}\right) f\left(t_{2}\right) \int_{0}^{2 \pi} \cos \left(2 \pi f_{c} t_{1}+\theta\right) \cos \left(2 \pi f_{c} t_{2}+\theta\right) d \theta \\
& =\frac{f\left(t_{1}\right) f\left(t_{2}\right)}{2} \int_{0}^{2 \pi}\left(\cos \left(2 \pi f_{c}\left(t_{1}+t_{2}\right)+2 \theta\right)+\cos \left(2 \pi f_{c}\left(t_{1}-t_{2}\right)\right)\right) d \theta \\
& =\frac{f\left(t_{1}\right) f\left(t_{2}\right)}{2} \cos \left(2 \pi f_{c}\left(t_{1}-t_{2}\right)\right) \cdot 2 \pi \\
& =f\left(t_{1}\right) f\left(t_{2}\right) \pi \cos \left(2 \pi f_{c}\left(t_{1}-t_{2}\right)\right)
\end{aligned}
$$

d. $X(t)$ is not a stationary process, unless $f\left(t_{1}\right) f\left(t_{2}\right)$ is only a function of $t_{1}-t_{2}$.
e. Nyquist rate $=400 \mathrm{KHz}$. Hence sampling rate $=500 \mathrm{KHz}$.
f. Total number of levels $=200 / 0.25=800$. As, $\log _{2} 800=9.64$, we will need 10 pulses for each sample.
g. Transmission rate $=500000 \times 10=5$ Megabits per second. As a unit bandwidth channel can transmit 2 bits of information per second, the required bandwidth is at least 2.5 MHz .

