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There are four Parts, assigned 1 point each, for a total of 4 points.

Part I (1 point):
A feedback system is shown in Figure 1 where P (s) is a system model and e−τs represents
transmission delay in the feedback path. The system transfer function can be fairly accurately
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Figure 1: Feedback system.

modeled over the range of frequencies that are relevant to stability analysis by

P (s) =
2√
s

for s = jω with ω measured in radians/sec. It is also given that when the transmission delay τ
is sufficiently small or zero, the feedback system is bounded-input/bounded-output stable.
Determine the maximal amount of time delay that the feedback system can tolerate before it
becomes unstable.



PhD Preliminary Written Exam Page 2 of 8
Control Systems Problem 2
Spring 2014

Space for your work:

Solution:
The frequency where the gain is 1, is ωgc = 4 [rad/sec]. The phase, for all frequencies, is

∠P (jω) = ∠ 2√
j×
√
ω

= −π
4

Thus, the phase margin is 3π/4 and the maximal amount of time-delay must be such that

ωgcτ = 3π/4

hence

τmaximal = 3π
16
' 0.5890
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Part II (1 point):
Determine the maximal interval [0, Kmaximal) for the gain K for which the delay-differential
equation

ẏ(t) = u(t)−Ky(t)− 2Ky(t− 1)−Ky(t− 2)

is stable. Here, u(t) is thought of as the input to the system and y(t) as the output.
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Solution:
The characteristic equation is

s+K(1 + 2e−s + e−2s) = 0.

Equivalently, we may consider

1 +K
(1 + e−s)2

s
= 0,

and therefore, the Nyquist diagram for loop gain

K
(1 + e−jω)2

jω
.

Thus, we need to determine the frequency where the

∠
(1 + e−jω)2

jω
= −π,

that is, the frequency where
∠1 + e−jω = −π

4
,

or, equivalently, the smallest frequency for which

1 + cos(ω) = sin(ω).

Clearly, the smallest such frequency is ω = π
2

and at that frequency the critical value for K
would be such that

K |1+e−jω |2
ω

= 1

But at ω = π/2, |1 + e−jπ/2| =
√

2. It follows that

Kmaximal = π
4
' 0.7854.
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Part III (1 point):
Consider the feedback system in Figure 2. Do the following:
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Figure 2: Feedback system.

i) Determine whether, for P (s) = s
1−s , the feedback loop is stable or not.

ii) Determine whether, for P (s) = s
(1−s)(1+εs)

and sufficiently small ε, the feedback loop is sta-
ble or not.
iii) Determine whether, for P (s) = se−τs

1−s and sufficiently small τ , the feedback loop is stable or
not.
iv) What conlcusions do you reach regarding the theoretical answer to part i)?
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Solution:
i) The characteristic equation is 1 + 2s

1−s = 0 which has a single root at s = −1. Hence, in
“theory” the system is stable .

ii) Since the loop gain has a zero at the origin and a pole on either side, root locus considerations
tell us that there is a branch starting from the pole in the right half plane that stays in the right
half plane for all values of K. Hence the system is unstable . Alternatively, compute the roots
of 1 + 2s

(1−s)(1+εs)
= 0. These are

ε+ 1±
√
ε2 + 6ε+ 1

2ε

and one of the two is always in the right half of the complex plane.

iii) The Nyquist diagram for 2s/(1− s) begins at the origin for ω ' 0 and circles the point −1
once in the counterclock-wise sense. It reaches the negative part of the real axis as ω →∞. The
counterclock-wise encirclement is completed by the negative portion of the Nyquist diagram. It
is now clear that, even with an infinitessimal time-delay present, the phase

∠e−jτω
jω

1− jω

fails to cross π in the counterclock-wise direction. Hence, the encirclement count cannot be −1
which is needed to ensure stability. Therefore the system is unstable .

iv) The conclusion in part i) is not relevant in practice where s/(1 − s) is only an ideal model.
High frequency attenuation and/or infinitesimal time-delays render the conclusion in part i)
invalid.
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Part IV (1 point):
Consider the Nyquist plot computed for a transfer function G(s) and shown in Figure 3. Deter-
mine whether G(s) is stable or not, and explain your reasoning.

[Warning: the above question is not about the stability of the feedback system with G(s) in the
forward path and, perhaps, negative unity feedback. The question is about whether G(s) itself
is stable or not.]
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Figure 3: Nyquist plots
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Solution:
Consider the system G(s) in a negative unity feedback loop anyway. Nyquist stability theory
tells us that the encirclement count, N , which in this case is −2, must be equal to Z − P where
Z is the number or roots of the characteristic equation that lie in the right half of the complex
plane (i.e., the unstable poles) and P is the number of unstable poles of the loop gain which in
this case is G(s). Clearly, Z ≥ 0 and since N = −2 we conclude that P ≥ 2 which means that
G(s) has at least two unstable poles .
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