Solutions

(a) Note that a 3-to-8 decoder and a single AND gate can implement any Boolean fuction of 3 variables. So the strategy is to find an analytic expression for the given function (of 5 variables) and try to simplify it, so that it can be implemented using a decoder, using additional flexibility provided by Enable input (of the decoder).
Hence, solution to this problem requires two parts:
(1) Deriving an analytic expression for the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ shown on K map, in a min SOP or min POS form.
(2) Implementing this Boolean function using the decoder.

Part (1). The decoder specified in this problem has 3 inputs and inverted outputs; therefore it can implement any Boolean function of 3 variables in a maxterm canonical form, where selected decoder outputs (maxterms) are used as inputs to a single AND gate. Hence, a reasonable solution strategy is to find a simple expression for the Boolean function in a minimum Product-of-Sums (POS) form.
The 5-variable function shown on K-map is (almost) symmetric with respect to C, i.e. all maxterms in the right half (for $\mathrm{C}=1$) are also present in the left half of the map (for $\mathrm{C}=0$). In addition, the left half has an extra maxterm ($\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}^{\prime}$).
So we can first simplify the symmetric part in a min POS form, and then add an extra product term (the extra maxterm), to form the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$.
Note that the symmetric part of the K-map is a function of 3 variables, because its maxterms are symmetric with respect to both C and A variables. So its min POS form is a 3-variable function $G(B, D, E)=\left(B+D^{\prime}+E^{\prime}\right)\left(B^{\prime}+E\right)-$ can be found from $K-m a p$.
The original 5-variable function can be decomposed as
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}^{\prime}\right) \mathrm{G}(\mathrm{B}, \mathrm{D}, \mathrm{E})$ or, even better/simpler as
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{E}^{\prime}\right) \mathrm{G}(\mathrm{B}, \mathrm{D}, \mathrm{E})$
Part (2). Function $G(B, D, E)$ can be implemented using a decoder with inputs B,D,E and a single AND gate. In order to decide which outputs (maxterms) should be ANDed together, the function needs to be represented in the maxterm canonical form, i.e.
$\left.G(B, D, E)=\left(B+D^{\prime}+E^{\prime}\right)\left(B^{\prime}+E\right)=\left(B+D^{\prime}+E^{\prime}\right)\left(B^{\prime}+D^{\prime}+E\right)\right)\left(B^{\prime}+D+E\right)=\Pi M(3,4,6)$
In order to generate the required function $F(A, B, C, D, E)=\left(A+B+C+E^{\prime}\right) G(B, D, E)$, the additional product term is fed to Enable (EN) input as $\mathrm{EN}^{\prime}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{E}^{\prime}\right)=\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{E}\right)^{\prime}$. This requires a second AND gate.

Grading: due to a typo in the original K-map specification for this problem, implementation of the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ requires two AND gates rather than one. So full credit (for this problem) will be given to students who showed correct algebraic/analytic representation of $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$, in either min POS or SOP form, - this corresponds, roughly, to Part (1) in the above solution.
(b) For the original counter (with negative edge-triggered flip-flops):

Flip-Flop operation table
Q_{1} complemented on negative edge of CP
Q_{2} complemented if $\left[\mathrm{Q}_{8}=0\right.$ and $\left.\mathrm{Q}_{1}: 1 \rightarrow 0\right]$
Q_{2} cleared if $\left[\mathrm{Q}_{8}=1\right.$ and $\left.\mathrm{Q}_{1}: 1 \rightarrow 0\right]$
Q_{4} complemented if $\left[\mathrm{Q}_{2}: 1 \rightarrow 0\right.$]
Q_{8} complemented if $\left[\mathrm{Q}_{4} \mathrm{Q}_{2}=11\right.$ and $\left.\mathrm{Q}_{1}: 1 \rightarrow 0\right]$
Q_{8} cleared if $\left[\left(\mathrm{Q}_{4}=0\right.\right.$ or $\left.\mathrm{Q}_{2}=0\right)$ and $\left.\mathrm{Q}_{1}: 1 \rightarrow 0\right]$
These conditions result in the following count sequence, starting from initial state 0000 This is a BCD or modulo 10 counter $0,1,2, \ldots, 9$ and repeat.

Transition states are bold and italicized

ANALYSIS of UNUSED STATES
Present $\mathrm{Q}_{8} \mathrm{Q}_{4} \mathrm{Q}_{2} \mathrm{Q}_{1}: 101010111100110111101111$
Next state : 101101001101010011110000
\rightarrow So this counter is self-starting.

For the counter with positive edge-triggered flip-flops:
Flip-Flop operation table
Q_{1} complemented on positive edge of CP
Q_{2} complemented if $\left[\mathrm{Q}_{8}=0\right.$ and $\left.\mathrm{Q}_{1}: 0 \rightarrow 1\right]$
Q_{2} cleared if $\left[\mathrm{Q}_{8}=1\right.$ and $\left.\mathrm{Q}_{1}: 0 \rightarrow 1\right]$
Q_{4} complemented if [$\mathrm{Q}_{2}: 0 \rightarrow 1$]
Q_{8} complemented if $\left[\mathrm{Q}_{4} \mathrm{Q}_{2}=11\right.$ and $\left.\mathrm{Q}_{1}: 0 \rightarrow 1\right]$
Q_{8} cleared if $\left[\left(\mathrm{Q}_{4}=0\right.\right.$ or $\left.\mathrm{Q}_{2}=0\right)$ and $\left.\mathrm{Q}_{1}: 0 \rightarrow 1\right]$
These conditions result in the following count sequence, assuming initial state 0000 .

\longrightarrow| \boldsymbol{Q}_{8} | \boldsymbol{Q}_{4} | \boldsymbol{Q}_{2} | $\boldsymbol{Q}_{\boldsymbol{1}}$ | State |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | |
| 0 | 1 | 1 | 1 | 7 |
| 0 | 1 | 1 | 0 | 6 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | |
| 1 | 1 | 0 | 1 | 13 |
| 1 | 1 | 0 | 0 | 12 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | |
| 0 | 1 | 0 | 1 | 5 |
| 0 | 1 | 0 | 0 | 4 |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 0 | 1 | 0 | 2 |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | |
| 0 | 0 | 0 | 1 | 1 |

Transition states are bold and italicized

This counter also cycles through a sequence of 10 states:
$0,7,6,13,12,5,4,3,2,1$, and repeat.

