An ideal Si p-n junction diode with cross-sectional area A=0.001 cm² had been fabricated in your lab, and the voltage drop (V_{bi} = 0.6946V) across the depletion region under equilibrium conditions (zero bias) was measured with the tools you developed. You also developed a system that visualizes the depletion width (W=9.6 x 10⁻⁵cm) of the diode under the equilibrium conditions. In order to test the diode you applied a forward bias (V_A) of 0.65V. ## Find current (I) with a forward bias (V_A =0.65 V) at room temperature (300 K). Assume that the current is diffusion dominated, and total number of acceptor atoms (N_A) is less than that of donor atoms (N_D). The electron (τ_n) and hole (τ_p) minority-carrier lifetime is 2.5ms, respectively. Physical constants: Electronic charge q= 1.60 x 10⁻¹⁹ C, Intrinsic carrier concentration at 300 K n_i =1.5x10¹⁰ /cm³ Boltzmann's constant k=1.38x10⁻²³ J/K Permittivity of free space ϵ_0 =8.85 x 10⁻¹⁴ F/cm Relative dielectric constant of Si K_s= 11.8 Figure 1. Room temperature carrier mobilities as a function of the dopant concentration in Si. μ_n is the electron mobility; μ_n is the hole mobility.