1) [15 points total; 5 points each part]

a) [5 points] By the periodicity of the complex exponential, we have that $e^{j(2 \pi / 8) k \cdot 9}=e^{j(2 \pi / 8) k}$ for all integers k. Thus,

$$
\begin{aligned}
\left.\left(\frac{1}{8} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k n}\right)\right|_{n=9} & =\frac{1}{8} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k \cdot 9} \\
& =\frac{1}{8} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k} \\
& =\left.\left(\frac{1}{8} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k n}\right)\right|_{n=1}=x[1]
\end{aligned}
$$

b) [5 points] Using the synthesis equation, we have that $y[n]=\frac{1}{4} \sum_{k=0}^{3} Y[k] W_{4}^{-k n}$. Now,

$$
\begin{aligned}
\frac{1}{4} \sum_{k=0}^{3} Y[k] W_{4}^{-k n} & =\frac{1}{4} \sum_{k=0}^{3}(X[k]+X[k+4]) W_{4}^{-k n} \\
& =\frac{1}{4} \sum_{k=0}^{3} X[k] W_{4}^{-k n}+\frac{1}{4} \sum_{k=0}^{3} X[k+4] W_{4}^{-k n} \\
& =\frac{1}{4} \sum_{k=0}^{3} X[k] W_{4}^{-k n}+\frac{1}{4} \sum_{k=4}^{7} X[k] W_{4}^{-(k+4) n} \quad(b y \text { change of index) } \\
& =\frac{1}{4} \sum_{k=0}^{3} X[k] W_{4}^{-k n}+\frac{1}{4} \sum_{k=4}^{7} X[k] W_{4}^{-k n} \underbrace{W_{4}^{-4 n}}_{1} \\
& =\frac{1}{4} \sum_{k=0}^{7} X[k] W_{4}^{-k n} \\
& =\frac{1}{4} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 4) k n} \\
& =\frac{1}{4} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k(2 n)} \\
& =2 \cdot x[2 n]
\end{aligned}
$$

c) [5 points] Writing $Z[k]=X[k]+(-1)^{k} X[k]=X[k]+W_{8}^{4 k} X[k]$, and recalling the time shift property, we have directly that $z[n]=x[n]+x\left[((n-4))_{8}\right]$.

Problem \#3
Signal Processing (Solutions)

2) $[10$ points total]

Using the convolution property, we can easily identify the transfer function $H\left(e^{j \omega}\right)$ of the system by the relation

$$
G\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) \cdot\left(\frac{1}{1-(1 / 3) e^{-j \omega}}\right) .
$$

Solving for $H\left(e^{j \omega}\right)$, we obtain that

$$
H\left(e^{j \omega}\right)=G\left(e^{j \omega}\right) \cdot\left(1-(1 / 3) e^{-j \omega}\right)=G\left(e^{j \omega}\right)-(1 / 3) e^{-j \omega} G\left(e^{j \omega}\right)
$$

A simple application of the time-shift property for DTFT's gives that the impulse response $h[n]$ of the system may be expressed as

$$
h[n]=g[n]-\left(\frac{1}{3}\right) g[n-1] .
$$

Thus, the response $y[n]$ of the system to an arbitrary input $x[n]$ is given by convolution:

$$
y[n]=x[n] * h[n]=x[n] * g[n]-\left(\frac{1}{3}\right) x[n] * g[n-1] .
$$

PhD Preliminary Written Exam Spring 2014

Problem \#3
Page 3 of 3

Signal Processing (Solutions)

3) $[15$ points total]

a) $[10$ points $]$ Since

$$
X_{e}\left(e^{j \omega}\right)=X\left(e^{j \omega L}\right)
$$

and $y[n]$ is related to $y_{e}[n]$ via

$$
Y\left(e^{j \omega}\right)=\frac{1}{M} \sum_{i=0}^{M-1} Y_{e}\left(e^{j(\omega / M-2 \pi i / M)}\right)
$$

we have for $L=2$ and $M=4$ that

b) [5 points] For $L=2$ and $M=8$, we can extend the results above to see that the DTFT of $y[n], Y\left(e^{j \omega}\right)$ will be comprised of the sum of the spectra shown in dotted lines below:

It is easy to see that the resulting signal has DTFT that takes the constant value 1 at all frequencies. Thus, we conclude $y[n]=\delta[n]$ here.

