This exam consists of three problems, worth a total of 40 points.
Problem 1 has three parts, and is worth 15 points.
Problem 2 has one part and is worth 10 points.
Problem 3 has two parts and is worth 15 points.

Below are a few preliminaries and definitions that you may find useful for the exam.

- For an N-point discrete-time sequence $x[n]$ with $x[n]=0$ for $n<0$ and $n>N-1$, we denote its N-point discrete Fourier Transform (DFT) by $X[k]$, where $X[k]=0$ for $k<0$ and $k>N-1$. The analysis and synthesis equations are:

$$
\begin{array}{lll}
\text { Analysis equation: } \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} & 0 \leq k \leq N-1, \\
\text { Synthesis equation: } x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} & 0 \leq n \leq N-1,
\end{array}
$$

where $W_{N} \triangleq e^{-j(2 \pi / N)}$.

- Recall the DFT time shift property: if $x[n]$ is an N-point discrete sequence with N-point DFT $X[k]$, then for W_{N} as above, we have that the N-point sequence with DFT given by $W_{N}^{k m} X[k]$ is given by $x[(n-m)$ modulo $N] \triangleq x\left[((n-m))_{N}\right]$.
- For a general discrete time sequence $x[n]$, we denote its discrete-time Fourier Transform (DTFT), when it exists, by $X\left(e^{j \omega}\right)$. The analysis and synthesis equations are:

$$
\begin{aligned}
\text { Analysis equation: } X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { Synthesis equation: } x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

- For the DTFT, Parseval's theorem states that

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega
$$

- You may wish to know that the discrete time sequence $x[n]=a^{n} u[n]$, where $|a|<1$ and $u[n]$ is the discrete-time unit step function, has DTFT $X\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}$.

1) [15 points total; 5 points each part] Let $x[n]$ be a real eight-point sequence, with $x[n]=0$ for all $n<0$ and all $n>7$. Let $X[k]$ denote the eight-point discrete Fourier Transform (DFT) of $x[n]$.
a) [5 points] Evaluate

$$
\left.\left(\frac{1}{8} \sum_{k=0}^{7} X[k] e^{j(2 \pi / 8) k n}\right)\right|_{n=9}
$$

in terms of $x[n]$.
b) [5 points] Let $y[n]$ be a four-point sequence, with $y[n]=0$ for all $n<0$ and all $n>3$. Let $Y[k]$ be the four-point DFT of $y[n]$.

If $Y[k]=X[k]+X[k+4]$, express $y[n]$ in terms of $x[n]$.
c) [5 points] Let $z[n]$ be an eight-point sequence, with $z[n]=0$ for all $n<0$ and all $n>7$. Let $Z[k]$ be the eight-point DFT of $Z[n]$.

If

$$
Z[k]=\left\{\begin{array}{ll}
2 X[k], & k=0,2,4,6 \\
0, & k=1,3,5,7,
\end{array},\right.
$$

express $z[n]$ in terms of $x[n]$.
2) [10 points total] Let the operator $\mathcal{H}\{\cdot\}$ describe the action of a discrete-time LTI system, and suppose that we characterize the system in terms of its response to an input of the form $(1 / 3)^{n} u[n]$, where $u[n]$ denotes the discrete time unit step function. That is, we know that

$$
\mathcal{H}\left\{\left(\frac{1}{3}\right)^{n} u[n]\right\}=g[n]
$$

for some (known) $g[n]$.
Find a simple expression for the output $y[n]$ of the system to a general input $x[n]$. Express your answer in terms of the input $x[n]$ and the known $g[n]$.
3) [15 points total] Consider the discrete-time system shown here

where

- L and M are positive integers
- $x_{e}[n]= \begin{cases}x[n / L], & n=k L, \quad(k \text { is any integer }) \\ 0, & \text { otherwise }\end{cases}$
- $y[n]=y_{e}[n M]$, and
- $H\left(e^{j \omega}\right)=\left\{\begin{array}{ll}M, & |\omega| \leq \pi / 4 \\ 0, & \pi / 4<|\omega| \leq \pi\end{array}\right.$.

Suppose that $X\left(e^{j \omega}\right)$, the DTFT of $x[n]$, is real and as is shown below

a) [10 points] For $L=2$ and $M=4$, draw and label $X_{e}\left(e^{j \omega}\right), Y_{e}\left(e^{j \omega}\right)$, and $Y\left(e^{j \omega}\right)$, the DTFT's of $x_{e}[n]$, $y_{e}[n]$, and $y[n]$, respectively.
b) [5 points] Determine a simple expression for $y[n]$ when $L=2$ and $M=8$.

