PhD Preliminary Written Exam Problem #10 Page 1 of 5
Spring 2013 Computer Architecture Solution

(a) [1.4 pt] Consider a processor with a 4-way set-associative cache with one-word blocks
and a total cache size of 32 words. The cache uses a least recently used replacement policy
and is initially empty.

The following sequence of decimal word address references is seen by the cache.

30, 86,53, 61, 29,37, 30,45, 6,22,14, 6,53, 29,78, 22,70, 61, 54, 78, 45, 30, 61, 37, 45, 6,
29

i. Indicate whether each address reference is a hit or a miss.

Address Set Hit/Miss

30 2 | Miss
86 2 | Miss
53 1 | Miss
61 1 | Miss
29 1 | Miss
37 1 | Miss
30 2 | Hit
45 1 | Miss

6 2 | Miss
22 2 | Miss
14 2 | Miss

6 2 | Hit
53 1 | Miss
29 1 | Hit
78 2 | Miss
22 2 | Hit
70 2 | Miss
61 1 | Miss
54 2 | Miss
78 2 | Hit
45 1 | Hit
30 2 | Miss
61 1 | Hit
37 1 | Miss
45 1 | Hit

6 2 | Miss
29 1 | Hit

PhD Preliminary Written Exam

Spring 2013

ii. Show the final cache contents.

Set

Contents

0

37,61

61,53, 37

53, 45

29

6,54

30;78

22, 30

86:14,76, 6

Problem #10
Computer Architecture Solution

Page 2 of 5

PhD Preliminary Written Exam Problem #10 Page 3 of 5
Spring 2013 Computer Architecture Solution

(b) [2 pt] Consider the following short program executing on a simple 5-stage pipeline
(Fetch, Decode, Execute, Memory, Writeback). In the notation used below, $N denotes
register N. For arithmetic instructions, the destination register is listed first, followed by
the source operands. For example, add $3, $2, $1 adds the contents of registers 1 and 2 and
stores the result in register 3.

(1) 1w $1,40($6)
(2) add $6, $2, $2
(3)sw $6,50($1)
(4) add $4, $5, $6
(5)Iw $6,10($4)

i. Identify all the data dependencies in the code given above.

$6 in Instr (2) has WAR dependency with instr (1)
$1 in Instr (3) has RAW dependency with instr (1)
$6 in Instr (3) has RAW dependency with instr (2)
$6 in Instr (4) has RAW dependency with instr (2)
$4 in Instr (5) has RAW dependency with instr (4)
$6 in Instr (5) has WAR dependency with instr (4)

ii. Assume a pipeline that does not implement forwarding. Identify which dependencies
from part (i) will cause data hazards if NOPs are not inserted.

Instr (1) | IF [ID | EXE | MEM | WB

Instr (2) IF |[ID |EXE |MEM | WB/WB

Instr (3) IF |ID/ID |EXE |MEM | WB

Instr (4) IF ID | EXE MEM

Instr (5) IF EXE | MEM | WB
Cyce |12 |3 |4 5 6 7 8 9

Instr (1) loads value to $1 at cycle 5, but instr (3) reads $1 at cycle 4.
Instr (2) writes value to $6 at cycle 6, but instr (3) reads $6 at cycle 4.
Instr (2) writes value to $6 at cycle 6, but instr (4) reads $6 at cycle 5.

PhD Preliminary Written Exam

Spring 2013

Problem #10

Computer Architecture Solution

Page 4 of 5

iii. If NOP instructions are inserted to avoid hazards in absence of forwarding hardware,
how many cycles does it take to execute the code?

Instr (1)

IF | ID | EXE

MEM | WB

Instr (2)

IF | ID

EXE | MEM

WB

NOP

NOP

NOP

NOP

Instr (3)

IF

ID | EXE

MEM

WB

Instr (4)

IF | ID

EXE

MEM | WB

NOP

NOP

NOP

NOP

Instr (5)

IF ID

EXE | MEM

WB

Cycle

4 5

11 |12

13

[t takes 13 cycles to execute this code.

iv. Now assume that forwarding paths are added to the pipeline and NOPs are added only
in cases where forwarding does not resolve a hazard. With forwarding, how many cycles
will it take to execute the code?

IF

ID

EXE

MEM

WB

Cycle 1

Iw $1, 40($6)

Cycle 2

add $6, $2, $2

lw $1, 40($6)

Cycle 3

sw $6, 50($1)

add $6, $2, $2

Iw $1, 40($6)

Cycle 4

add $4, $5, $6

sw $6, 50($1)

add $6, $2, $2

Iw $1, 40($6)

Cycle 5

lw $6, 10($4)

add $4, $5, $6

sw $6,50($1)

add $6, $2, $2

lw $1, 40($6)

Cycle 6

lw $6, 10($4)

add $4, $5, $6

sw $6, 50($1)

add $6, $2, $2

Cycle 7

Iw $6, 10(54)

add 54, $5, $6

sw $6, 50($1)

Cycle 8

Iw $6, 10($4)

add $4, $5, $6

Cycle 9

Iw $6, 10($4)

Instr (1) forwards the load result ($1) from MEM/WB register to ID/EXE as an ALU input at

cycle 5.

Instr (2) forwards the add result ($6) from EXE/MEM register to ID/EXE as a store input at

cycle 5.

Instr (2) forwards the add result ($6) from MEM/WB register to ID/EXE as an ALU input at

cycle 6.

With forwarding, it takes 9 cycles to execute the code.

PhD Preliminary Written Exam Problem #10 Page 5 of 5
Spring 2013 Computer Architecture Solution

(c) [0.6 pt] A student runs a serial (non-parallel) program on a single core of a 128-core
processor. The student uses gprof to profile the code and observes the following output.
(gprof shows the percentage of execution time spent executing each function in the
program.)

NAME TIME %
work 4163 98
play 85 2

Observing that most of the execution time is spent executing the “work” function, the
student decides to write a new version of the program in which the “work” function is
replaced by a parallel implementation of the function. What is the fastest execution time
the student can expect when running the parallel version of the program on the 128-core
processor?

416
parallel execution time(N = 128) =85+ —— = 117.5

128
1 4163 + 85
speedup(N = 128) = P 0.98 ~ 4163
(1-P)+ 135 002+128 128+85

Given a processor with unlimited cores, what is the maximum speedup that can be
achieved by the student’s code?

1
maximum speedup = hm —— = lim 098 =50

(1—P)+£ AH°°ooz+—

