April 16, 2011 - WPE Problem 1 (Communications) - Page 1/2

- (a) Closed Book and Closed Notes Exam (Calculators are allowed)
- (b) Perfect Score: 40
- (c) Nominal Duration: 60 minutes

~				
5	tudent	Number:		

Problem 1 (6 points) Consider the following two passband signals:

$$u_p(t) = \sqrt{2} \operatorname{sinc}(2t) \cos 100\pi t$$
 and $v_p(t) = \sqrt{2} \operatorname{sinc}(t) \sin \left(101\pi t + \frac{\pi}{4}\right)$.

- (a) (2 points) Find the complex envelopes u(t) and v(t) for $u_p(t)$ and $v_p(t)$, respectively, with respect to the carrier frequency $f_c = 50$. [Recall the definition $\operatorname{sinc}(x) := (\sin(\pi x))/(\pi x)$.]
- (b) (2 points) Find the inner product $\langle u_p(t), v_p(t) \rangle$.
- (c) (2 points) Find the convolution $y_p(t) = (u_p \star v_p)(t)$.

Problem 2 (9 points) Consider the pulse $s(t) = \operatorname{sinc}(at) \operatorname{sinc}(bt)$, where $a \ge b > 0$).

- (a) (2 points) Sketch the frequency-domain response S(f) of the pulse.
- (b) (4 points) Suppose that the pulse is to be used over a passband channel spanning the frequencies 2.4–2.42 GHz. Assuming that we use 64-QAM signaling at 60 Mbit/s, choose a and b so that the pulse is Nyquist and exactly fills the channel bandwidth.
- (c) (3 points) If s(t) is used as a transmit-filter to form a linearly modulated waveform x(t), argue that |x(t)| is always finite.

Problem 3 (10 points) Consider a BPSK system in which the receiver's estimate of the carrier phase is off by θ . Supposing $0 < \theta < \pi/2$, find the bit error rate as a function of θ and E_b/N_0 .

Problem 4 (15 points) The receiver in a binary communication system employs a decision statistic x which behaves as follows: x = n if 0 is sent, and x = 4 + n if 1 is sent, where n is modeled as Laplacian with density $p(n) = \frac{1}{2} \exp(-|n|)$.

- (a) (5 points) Find the log likelihood ratio $\ell(x) := \log[p(x|1)/p(x|0)]$, where p(x|i) denotes the conditional density of x given that i is sent (i = 0, 1).
- (b) (5 points) Find $P_{e|1}$, the conditional error probability given that 1 is sent, for the decision rule

$$\delta(x) = \begin{cases} 0, & x < 1 \\ 1, & x \ge 1. \end{cases}$$

(c) (5 points) Is $\delta(x)$ in (b) the minimum probability of error (MPE) rule for any choice of prior probabilities? If so, specify the prior probability $\pi_0 = P[0 \text{ sent}]$ for which it is the MPE rule. If not, say why not.