April 16, 2011 - SOLUTIONS of Problem 1 (Communications) - Page 1/2

Problem 1. (a) For a frequency reference $f_{c}=50$, the complex envelope of $u_{p}(t)$ is given by $u(t)=\operatorname{sinc}(2 t)$. For $v_{p}(t)$, we write

$$
\begin{aligned}
v_{p}(t) & =\sqrt{2} \operatorname{sinc}(t) \sin \left(101 \pi t+\frac{\pi}{4}\right) \\
& =\sqrt{2} \operatorname{Re}\left(\operatorname{sinc}(t)\left(-j e^{j(101 \pi t+\pi / 4)}\right)\right) \\
& =\sqrt{2} \operatorname{Re}\left(\operatorname{sinc}(t) e^{j(\pi t-\pi / 4)} e^{j 100 \pi t}\right)
\end{aligned}
$$

(where we have used $-j=e^{-j \pi / 2}$), from which we can read off $v(t)=\operatorname{sinc}(t) e^{j(\pi t-\pi / 4)}$.
(b) The inner product

$$
\left\langle u_{p}, v_{p}\right\rangle=\operatorname{Re}(\langle u, v\rangle)=\operatorname{Re}\left(\int U(f) V^{*}(f) \mathrm{d} f\right) .
$$

But $U(f)=\frac{1}{2} I_{[-1,1]}(f)$ and $V(f)=e^{-j \pi / 4} I_{[0,1]}(f)$, so that

$$
\int U(f) V^{*}(f) \mathrm{d} f=\frac{1}{2} e^{j \pi / 4}
$$

We therefore obtain that $\left\langle u_{p}, v_{p}\right\rangle=\frac{1}{2 \sqrt{2}}$.
(c) We have $Y(f)=\frac{1}{\sqrt{2}} U(f) V(f)=\frac{1}{2 \sqrt{2}} V(f)$ (since $U(f)$ takes the constant value $\frac{1}{2}$ over the support of $V(f))$. This implies that $y_{p}(t)=\frac{1}{2 \sqrt{2}} v_{p}(t)=\frac{1}{2} \operatorname{sinc}(t) \sin (101 \pi t+\pi / 4)$.
Problem 2. (a) Letting $s_{1}(t)=\operatorname{sinc}(a t), s_{2}(t)=\operatorname{sinc}(b t)$, we have $s(t)=s_{1}(t) s_{2}(t) \leftrightarrow S(f)=$ $\left(S_{1} \star S_{2}\right)(f)$. The spectra S_{1}, S_{2}, and S are sketched in Figure 1.

Figure 1: The spectrum of $S(f)$.
(b) The passband system has (two-sided) bandwidth of 20 MHz , and symbol rate $1 / T=$ $\frac{60 \mathrm{Mbps}}{\log _{2} 64 \text { bits/symbol }}=10 \mathrm{Msymbols} / \mathrm{sec}$. For full occupancy, we have $\frac{a+b}{2}=10 \mathrm{MHz}$, and $\frac{a+b}{2}+\frac{a-b}{2}=10$ Mhz, which yields $a=b=10 \mathrm{MHz}$.

April 16, 2011 - SOLUTIONS of Problem 1 (Communications) - Page 2/2
(c) Since $\operatorname{sinc}(a t), \operatorname{sinc}(b t)$ both decay as $1 / t$, the pulse $s(t)$ exhibits $1 / t^{2}$ decay. Since $\int \frac{1}{t^{2}} \mathrm{~d} t$ is finite, the superposition of waveforms of the form $s(t-n T)$ adds up to a finite value at any point of time.

Problem 3. From Fig. 2, it can be seen that error occurs if the I-channel noise $N \sim N\left(0, \sigma^{2}\right)$ causes a boundary crossing:

$$
P_{e}=\operatorname{Pr}[N>d / 2 \cos \theta]=Q\left(\frac{d \cos \theta}{2 \sigma}\right)
$$

Since $E_{b}=d^{2}$, we obtain $P_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}} \cos \theta\right)$.

Figure 2: BPSK with phase mismatch.
Problem 4. (a) We have $p(x \mid 0)=\frac{1}{2} e^{-|x|}$ and $p(x \mid 1)=\frac{1}{2} e^{-|x-4|}$, so that the \log likelihood ratio is given by $\ell(x)=\log [p(x \mid 1) / p(x \mid 0)]=|x|-|x-4|$.
(b) The conditional error probability given 1 is

$$
\begin{aligned}
P_{e \mid 1} & =P\left[x<1 \mid H_{1}\right]=\int_{-\infty}^{1} p(x \mid 1) \mathrm{d} x=\int_{-\infty}^{1} \frac{1}{2} e^{-|x-4|} \mathrm{d} x \\
& =\frac{1}{2} \int_{-\infty}^{1} e^{x-4} \mathrm{~d} x=e^{-3} / 2=0.025 .
\end{aligned}
$$

(c) The region $x<1$ can be written as $\ell(x)<-2$. The MPE rule compares $\ell(x)$ to $\log \frac{\pi_{0}}{\pi_{1}}$. Thus, the rule in (b) is MPE rule if $\log \frac{\pi_{0}}{\pi_{1}}=-2$, which yields $\pi_{0}=\frac{1}{e^{2}+1} \approx 0.12$.

