
PhD Preliminary Written Exam Problem 2 solutions

April 16, 2011 Controls

Solutions for Question #1:

i) We compute limt→∞ y(t) = lims→0 s
(

1
s
P (s)

)

= 1. Steady state value = 1

ii) Since s2+s+1 = s2+2ζωs+ω2, we read off the damping ratio ζ = 1
2
and the undamped

natural frequency ωn = 1. Hence, the attenuation rate is

σ = −ζωn = −1
2

and the frequency of damped oscillations is

ωd = ω
√

1 − ζ2 =
√

3
2

or, the approximate period

Td = 4π√
3

Since the denominator of the Laplace transform of Y (s) is s(s2 + s + 1)2, for t > 0, the

response will be of the form

A + eσt (B sin(ωdt + φ1) + Dt sin(ωdt + φ2))

iii) The limit of the derivative of y(t) at 0 (‘‘initial value theorem’’) is

limt→0+
dy(t)

dt
= lims→∞ sP (s) = −1

Hence, y(t) turns negative before it turns positive towards the steady state limit of 1.

iv) In this case

limt→0+
dy(t)

dt
= lims→∞ sP (s) = bn−1

We may write the transfer function

P (s) =
b0(1 + s/z1)(1 + s/z2) . . . (1 + s/zn−1)

a0 + a1s + . . . + an−1sn−1 + sn
,

where all the coefficients in the denominator are positive (since the system is stable).

We need to show that an odd number of right half plane zeros turn bn−1 negative. Complex

roots come in pairs and the product of two such roots is zz̄ = |z|2 > 0. Hence if there

is an odd number of roots among {z1, . . . , zn−1} in the right half plane, there will be an

odd number of negative ones. Then

bn−1 = b0

n−1
∏

i=1

1

zi

must be negative. Therefore y′(0+) < 0 and y(t) turns negative before it settles to the

steady-state value lims→0 sP (s) = b0/a0 > 0.
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ii) Consider the characteristic equation 1 + kP (s) = 0. For k = −2/3,

1 −
2

3
×

1 − s

1 − s/3
= 0

has a single root at s = −1 which is in the left half of the complex plane.

Hence, k = −2/3 works.
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iii) We see from the Nyquist plot that the

encirclement count is N = −1. We know

that

N = Z − P

where Z is the number of closed-loop

poles in the right half plane and P = 1 is

the number of open loop poles.

Therefore we have that Z = 0 and the

feedback system has no RHP pole.
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iv) We see from the Nyquist plot that now

the plot no longer closes in around the

point −1. This is due to the fact that

while the loop gain 2
3
× 1−s

1−s/3
at s = j∞

becomes equal to −2, when a delay is

present, even a small one, the loop gain

is now

e−τs 2

3
×

1 − s

1 − s/3

and the phase due to the delay causes

the plot to rotate clockwise. Hence N
is no longer negative, and the system is

unstable.
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v) You may choose C(s) = K 1
s/3−1

and the

characteristic polynomial becomes

(s/3 − 1)2 + K(s − 1) =
s2

9
−

2s

3
+ 1 + K(s − 1).

Now choose K = 2
3

+ ǫ. The characteristic

polynomial is now

s2

9
+ ǫs + 1/3 − ǫ.

We need to take 0 < ǫ < 1/3 for stability,

since then, all coefficients of the

characteristic polynomial will be positive

and its roots will be in the left half

plane. It is insightful and instructive

to consider the root locus which in this

case is given on the right.
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