DIGITAL DESIGN PROBLEM

Problem 1 [0.5 points]

Implement a magnitude comparator circuit which compares two-bit binary numbers $A=A_{1} A_{0}$ and $B=B_{1} B_{0}$, and provides 3 outputs ($A>B, A=B, A<B$), using three 8 -to- 1 multiplexers and no additional gates.

Solution:

There could be many different solutions to this problem. Suppose A_{1}, A_{0}, and B_{1} are the select inputs to all three 8 -to- 1 multiplexers, we can have the following true table.

A_{1}	$\mathrm{~A}_{0}$	$\mathrm{~B}_{1}$	$\mathrm{~A}=\mathrm{B}$	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
0	0	0	$\mathrm{~B}_{0}{ }^{\prime}$	0	$\mathrm{~B}_{0}$
0	0	1	0	0	1
0	1	0	$\mathrm{~B}_{0}$	$\mathrm{~B}_{0}{ }^{\prime}$	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	$\mathrm{~B}_{0}{ }^{\prime}$	0	$\mathrm{~B}_{0}$
1	1	0	0	1	0
1	1	1	$\mathrm{~B}_{0}$	$\mathrm{~B}_{0}{ }^{\prime}$	0

Implementation of this truth table is straightforward. The columns under $A=B, A>B, A<B$ represent the inputs to each 8 -to- 1 mux starting from the 000 input to the 111 input. For example, $A=B$ is the output of the mux with $I 0=B_{0}{ }^{\prime}, I 1=0, I 2=B_{0}, I 3=0, I 4=0, I 5=B_{0}{ }^{\prime}, I 6=0, I 7=B_{0}$.

Problem 2 [1.5 points]
A 4-input priority encoder with enable is shown below. When EI is 0 , all outputs are 0 . When EI is 1 ,
i) and all 4 xi inputs are $0, E O$ is 1 and $y 1=y 0=0$
ii) and not all 4 xi inputs are 0 , EO is 0 and y 1 and y 0 are the binary encoding for the highest priority xi input that is 1 (For example, $x 3$ is highest priority whose binary encoding is $11 . \mathrm{x} 1$ is lowest priority with binary encoding 01 and so on).

(a) [0.4 points] Draw a two-level NAND-gate implementation of this priority encoder. Assume both true and complementary inputs are available.
(b) [0.4 points] Draw a two-level NOR-gate implementation of this priority encoder. Assume both true and complementary inputs are available.
(c) [0.7 points] Draw a diagram of an 8 -input priority encoder of the same type using two 4 -input priority encoders and a few logic gates.

Solutions:

The truth table for this encoder is

EI	$x 3$	$x 2$	$x 1$	$x 0$	$E O$	$y 1$	$y 0$
0	-	-	-	-	0	0	0
1	0	0	0	0	1	0	0
1	1	-	-	-	0	1	1
1	0	1	-	-	0	1	0
1	0	0	1	-	0	0	1
1	0	0	0	1	0	0	0

(a) $\mathrm{EO}=\mathrm{EI} x 3^{\prime} \mathrm{x} 2^{\prime} \mathrm{x} 1^{\prime} \mathrm{x} 0^{\prime}$
y1 = EI x3 + EI x2
y0 = EI x3 + EI x2'x1
Two 2-input NANDs, one 3-input NAND, one 5-input NAND, and one inverter
(b) $\mathrm{EO}=\left(\mathrm{EI}^{\prime}+\mathrm{x} 3+\mathrm{x} 2+\mathrm{x} 1+\mathrm{x} 0\right)^{\prime}$
$\mathrm{y} 1=\mathrm{EI}(\mathrm{x} 3+\mathrm{x} 2)$
$y 0=E I\left(x 3+x 2^{\prime}\right)(x 3+x 1)$
Four 2-input NORs, one 3-input NORs, one 5 -input NOR, and one inverter
(c) This requires two of the 4-input priority encoders, with EO of the higher priority encoder connected to EI of the lower priority encoder, and two 2 input OR gates to OR the y1 and y0 outputs of the two priority encoders.

Problem 3 [2.0 points]
(a) [0.5 points] A basic lawn sprinkler system waters the lawn at 8am, once every 3 days. Its operation can be modeled as a Moore-style finite state machine, where a clock period is one day, and a binary output W indicates whether the sprinkler is activated $(\mathrm{W}=1)$ or not $(\mathrm{W}=0)$ on that day. Show the transition diagram for this sprinkler control system.
(b) [0.5 points] An advanced sprinkler system has a rain sensor. The presence of rain during a particular day is indicated by the binary input R (with values $0 / 1$ indicating No/Yes_rain). This sprinkler waters the lawn once every 3 days, assuming there has been no rain during previous 2 days. Show the transition diagram (Moore-style) for this advanced sprinkler system.
(c) [1.0 points] Implement the transition diagram of a sprinkler system in part (b) using a 4-bit counter with parallel load capability and external gates. The counter is specified by its operation table shown below. Use the most appropriate state assignment for this counter implementation. (Implementation means showing the block diagram with clearly labeled inputs/outputs, and derivation of the Boolean equations for control/data inputs of the counter).

Counter operation table:
(All functions are synchronous with a clock)

Clear	Load	$\begin{aligned} & \text { Coun } \\ & t \\ & \hline \end{aligned}$	Function
0	X	X	Clear
1	0	0	No change
1	1	X	Load
1	0	1	Count up

Solutions:

(a)

(b)

(c) Use two least significant bits of the counter $\mathrm{q}_{1} \mathrm{q}_{2}$ to encode 3 states. From the transition diagram: transitions $\mathrm{S} 0 \rightarrow \mathrm{~S} 1$ and $\mathrm{S} 1 \rightarrow \mathrm{~S} 2$ can be implemented via counting function. All other transitions (to state $\mathrm{S} 0 \sim 00$) are implemented using CLEAR function. So, we use this state assignment $\mathrm{S} 0 \sim 00$, $\mathrm{S} 1 \sim 01, \mathrm{~S} 2 \sim 10$. Count up function requires Load=0, Count=1.Clear input should be zero whenever input $\mathrm{R}=1$ or when the system is in state $\mathrm{S} 2\left(\mathrm{q}_{1}=1\right)$.
Hence, Clear $=\left(q_{1}+R\right)^{\prime}=q_{1}{ }^{\prime} \mathrm{R}^{\prime}$
Count $=1$, Load $=0$, parallel Load inputs are don't cares.
Alternatively, you can use a state transition table.

q_{1}	q_{2}	R	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{2}{ }^{+}$		Clear	Load	Count
0	0	0	0	1	count	1	0	1
0	0	1	0	0	clear	0	x	x
0	1	0	1	0	count	1	0	1
0	1	1	0	0	clear	0	x	x
1	0	0	0	0	clear	0	x	x
1	0	1	0	0	clear	0	x	x
1	1	0	x	x	x	x	x	x
1	1	1	x	x	x	x	x	x

$$
\text { Clear }=\mathrm{q}_{1} \mathrm{R}^{\prime} \text { or }\left(\mathrm{q}_{1}+\mathrm{R}\right)^{\prime}
$$

$\mathbf{R} \mathbf{q}_{1} \mathbf{q}_{\mathbf{2}}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	1	1	x	0
$\mathbf{1}$	0	0	x	0

Load=0

$\mathbf{R} \mathbf{q}_{1} \mathbf{q}_{\mathbf{2}}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	x	x
$\mathbf{1}$	x	x	x	x

Count $=1$ (clearly seen from the truth table).

