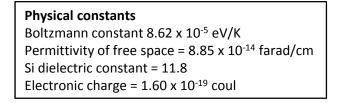
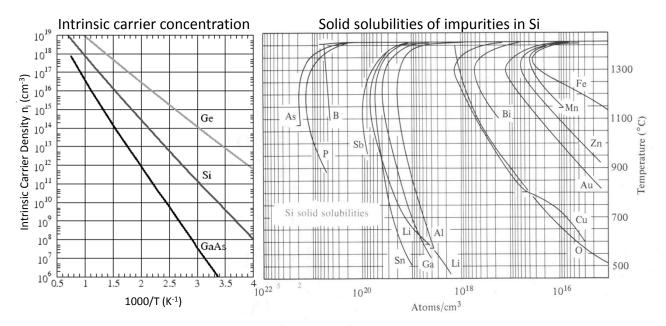
PhD Preliminary Written Exam Fall 2013 Problem 6 Semiconductor Devices Page 1 of 1


There is an n-type of silicon which contains a concentration of donors: 10^{15} cm⁻³. The n-type of silicon and aluminum were brought together and alloyed at 600 °C. At the alloying temperature, a p/n junction was formed with an acceptor concentration which equals a solid solubility at the alloying temperature of 600 °C.


- 1) Calculate the Fermi level positions $(E_{ip}-E_{FP})$ at 328K in the p region. (1 point) E_{ip} . Intrinsic fermi level on the p-side, E_{FP} . Fermi level on the p-side of a p/n junction.
- 2) Calculate the Fermi level positions $(E_{Fn}-E_{in})$ at 328K in the n region. (1 point) E_{Fn} . Fermi level on the n-side of a p/n junction, E_{in} . Intrinsic fermi level on the n-side

3) Calculate the contact potential V_{bi} (voltage drop across the depletion region under equilibrium conditions). (0.5 points)

4) Draw an equilibrium band diagram for the junction and put the numbers of $E_{ip}-E_{FP}$, $E_{Fn}-E_{in}$, and qV_{bi} in the diagram. (0.5 points)

5) Calculate the depletion region (W) under equilibrium conditions. Assume a Si step junction operated at 328K. (1 point)

