
Qualifying Exam Fall 2011: Transmission Lines, Fields and Waves

Note that $\epsilon_0 = 8.8542 \cdot 10^{-12}$ F/m, and $\mu_0 = 4\pi \cdot 10^{-7}$ H/m.

- 1. (a) The reflection coefficient at the input gate of a microwave FET in the grounded source configuration, is measured as $0.3\angle$ -25 ° in a 50Ω transmission line system at 6 GHz, with the transmission line velocity 1×10^8 m/sec.
 - i. At what distance in wavelengths and cms, nearest to the gate is the voltage minimum along this line? (Use a Smith Chart) (0.5 points)
 - ii. What is the input impedance in ohms at this voltage minimum? (0.5 points)
 - iii. Design a quarter-wave transformer matching circuit for the input gate of this device to 50 Ω from this voltage minimum. (1 point)
 - (b) With crude oil prices of over \$80 per barrel, extraction of oil from shale is an economic proposition. In one such procedure, a coaxial line with slots is placed in a borehole, and radiates at 915 MHz into the shale, to separate the oil and water from the soil. Assume that the ϵ_r of wet oil loaded shale is 25.5 and σ is 0.5 S/m, and also assume **plane wave propagation**.
 - i. What is the complex permittivity ϵ_c of the shale? (0.5 points)
 - ii. What is the skin depth of the medium? 0.5 points)
 - iii. What is the attenuation in dB/m in the direction away from the borehole? (0.5 points)
 - iv. Determine the distance at which the radiated power decays to an electric field value of $10 \,\mu\text{V/cm}$ if the initial power density in the soil at the edge of the borehole is $2.75 \,\text{KW/m}^2$. (0.5 points)

Smith Chart

