Fall 2011

WPE Problem 7: Optics

November 5, 2011

Consider a Gaussian beam whose width (beam radius) $W(z)$ and wavefront radius of curvature $R(z)$ are given by

$$
W(z)=\sqrt{W_{0}^{2}+\frac{\lambda^{2} z^{2}}{\pi^{2} W_{0}^{2}}} \quad R(z)=z\left[1+\left(\frac{\pi W_{0}^{2}}{\lambda z}\right)^{2}\right]
$$

Here λ is the wavelength and W_{0} is the beam radius at the center.
(a) (1 points) The axial distance within which the beam width is no greater than $\sqrt{2}$ times its minimum value is known as the depth of focus. For a HeNe wavelength, $\lambda=633 \mathrm{~nm}$, calculate a depth of focus for a Gaussian beam with a spot diameter $2 \times \mathrm{W}_{0}=2 \mathrm{~cm}$.

For (b), (c) and (d): A symmetrical cavity is formed by two concave spherical mirrors, each of radius of curvature R and separated by a distance d .
(b) (1.5 points) Calculate the spot size, $2 \mathrm{~W}_{0}$, at the center of the cavity, as a function of R , d , and λ.

One of the most commonly used cavity configuration is known as the confocal resonator, which consists of two identical concave spherical mirrors with $\mathrm{R}=\mathrm{d}$.
(c) (0.25 points) What is the advantage of using the confocal cavity compared with a cavity consisting of flat parallel mirrors?
(d) (1.25 points) In the case of a confocal resonator with $\mathrm{R}=\mathrm{d}$, calculate the spot size at the center and the spot size at either mirror (i.e. $z= \pm d / 2$).

