1) [15 points] Consider discrete-time LTI system depicted below.

Figure 1: Discrete-time LTI system.

Suppose that $H(z)=\left(1-2 z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)$ with ROC $|z|>0$. Find the impulse response $g[n]$ of a stable system G such that $w[n]=x[n-2]$.

Hint: Recall the following z-Transform relations, which you may find useful:

$$
\begin{aligned}
x[n]=\alpha^{n} u[n] \longleftrightarrow X(z) & =\frac{1}{1-a z^{-1}}, \quad R O C:|z|>|a| \\
x[n]=-\alpha^{n} u[-n-1] \longleftrightarrow X(z) & =\frac{1}{1-a z^{-1}}, \quad R O C:|z|<|a|
\end{aligned}
$$

2) [10 points] Recall that the discrete-time convolution operation satisfies several standard arithmetic properties. Namely, for all functions $f[n], g[n]$, and $h[n]$, we have:

- Commutativity: $f[n] * g[n]=g[n] * f[n]$
- Associativity: $f[n] *(g[n] * h[n])=(f[n] * g[n]) * h[n]$
- Distributivity: $f[n] *(g[n]+h[n])=(f[n]+g[n])+(f[n]+h[n])$

Note, however, that for arbitrary functions $g[n], h[n]$, the relationship

$$
\begin{equation*}
f[n](g[n] * h[n])=(f[n] g[n]) *(f[n] h[n]) \tag{1}
\end{equation*}
$$

does not hold for all $f[n]$, though it does hold for the trivial cases $f[n]=1$ and $f[n]=0$.
Besides the trivial examples given above, find another function $f[n]$ for which (1) holds for all $g[n], h[n]$.
3) Consider the system shown below.

Figure 2: System for digital processing of analog signals.
The anti-aliasing filter $H_{c}(j \Omega)$ is an ideal low-pass continuous-time filter with unit gain and cutoff frequency π / T. The frequency response of the LTI discrete time system between the converters is given by:

$$
H_{d}\left(e^{j \omega}\right)=j \omega e^{-j \omega / 3}, \quad|\omega|<\pi
$$

Assume that the C / D and D / C converters are ideal.
a) [5 points] Find the impulse response $h_{d}[n]$ of the discrete-time LTI system.
b) [5 points] What is the effective continuous-time frequency response of the overall system, $H(j \Omega)$?
c) [5 points] Choose the most accurate statement:
(i) $y(t)=x(t-1 / 3)$
(ii) $y(t)=\frac{d}{d t} x(3 t)$
(iii) $y(t)=T \frac{d}{d t} x(t-1 / 3)$
(iv) $y(t)=T \frac{d}{d t} x(t-T / 3)$
(v) $y(t)=\frac{d}{d t} x(t-1 / 3)$
(vi) $y(t)=\frac{d}{d t} x(t-T / 3)$

