- A. (2 pts) A silicon crystal has $2 \times 10^{18} \ cm^{-3}$ phosphorus atoms. The donor level of a phosphorus atom is 0.045 eV below the bottom of the conduction band and the effective density of states in the conduction band is $N_C = 2.86 \times 10^{19}$ cm⁻³. Assume a degeneracy factor of 2. Determine the room temperature electron concentration, the position of the Fermi energy, and the fraction of impurities that are ionized.
- B. (2 pts) A semiconductor has a bulk energy gap of 1.5 eV and electron and hole effective masses equal to $0.1m_0$ ($m_0 = 9.11 \times 10^{-31}$ kg). Estimate the increase in the energy gap when the material is incorporated into a one-dimensional quantum well with $L_z = 10$ nm.

9	$1.6 \times 10^{-19} \text{ C}$	electron charge
ϵ_0	$8.85 \times 10^{-14} \text{ F/cm}$	permittivity of free space
K_s	11.8 (Si)	relative dielectric constant
K_o	3.9 (SiO ₂)	relative dielectric constant
k_B	$8.617 \times 10^{-5} \text{ eV/K}$	Boltzman's constant
h	$6.63 \times 10^{-34} \mathrm{J \ s}$	Planck constant
m_o	$9.11 \times 10^{-31} \text{ kg}$	electron mass
k_BT/q	0.0259 V at 300 K	thermal voltage
C	$3 \times 10^8 \text{ m/s}$	speed of light