## Part a:

The phase of the reflected beam can be found by:

$$
\begin{aligned}
& \left|\frac{E_{\mathrm{t}}}{E_{\mathrm{i}}}\right| e^{-i \Psi}=\frac{(1-R)\left(1+R \mathrm{e}^{i \delta}\right)}{\left(1-R \mathrm{e}^{-i \delta}\right)\left(1+R \mathrm{e}^{i \delta}\right)} e^{-i \delta / 2} \\
& =\frac{(1-R)+R(1-R) e^{i \delta}}{1+R^{2}-2 R \cos \delta} e^{-i \delta / 2}=\frac{(1-R)+R(1-R)(\cos \delta+i \sin \delta)}{1+R^{2}-2 R \cos \delta} e^{-i \delta / 2}
\end{aligned}
$$

So

$$
\Psi=\frac{\delta}{2}-\arctan \left\{\frac{R(1-R) \sin \delta}{(1-R)+R(1-R) \cos \delta}\right\}=\frac{\delta}{2}-\arctan \left\{\frac{R \sin \delta}{1+R \cos \delta}\right\}
$$

## Part b:

1) Group delay:

$$
\tau=\frac{d \Psi}{d \omega}=\frac{d \Psi}{d \delta} \frac{d \delta}{d \omega}
$$

First, $\frac{d \delta}{d \omega}=\frac{d}{d \omega}\left[\frac{2 n(\omega) \omega l}{c}\right]=\frac{2 l}{c}\left[n(\omega)+\omega \frac{d n(\omega)}{d \omega}\right]=\frac{2 n_{g} l}{c}$
and

$$
\begin{aligned}
& \frac{d \Psi}{d \delta}=\frac{1}{2}-\frac{d}{d \delta} \arctan \left(\frac{R \sin \delta}{1+R \cos \delta}\right) \\
& =\frac{1}{2}-\frac{1}{1+\left(\frac{R \sin \delta}{1+R \cos \delta}\right)^{2}}\left[\frac{R \cos \delta}{1+R \cos \delta}+\frac{R^{2} \sin ^{2} \delta}{(1+R \cos \delta)^{2}}\right] \\
& =\frac{1}{2}-\frac{R \cos \delta+R^{2}}{1+R^{2}+2 R \cos \delta}
\end{aligned}
$$

So group delay is:

$$
\tau=\frac{d \Psi}{d \omega}=\frac{2 n_{g} l}{c}\left[\frac{1}{2}-\frac{R \cos \delta+R^{2}}{1+R^{2}+2 R \cos \delta}\right]
$$

2) To find its extreme values, let $d \Psi / d \omega=0$, which leads to $\sin \delta=0$, so $\delta=m \pi$, where $m$ is an integer.
When $m$ is even, $\cos \delta=1$, group delay $\tau=n_{g} l / c\left(1-\frac{2 R}{1+R}\right)=\frac{n_{g} l}{c} \frac{1-R}{1+R}$ is the minimum.
When m is odd, $\cos \delta=-1$, group delay is $\tau=n_{g} l / c\left(1-\frac{2 R}{1+R}\right)=\frac{n_{g} l}{c} \frac{1+R}{1-R}$ is the maximum.
