Solution 9 A Spring 2013

$$
\begin{aligned}
& V_{\text {in }}=30 \mathrm{~V}, \quad V_{0}=60 \mathrm{~V}, \quad f_{5}=200 \mathrm{kHz} \\
& P_{0 \text { max }}=180 \mathrm{~W} . \quad T_{5}=\frac{1}{200}=5 \mathrm{\mu s}
\end{aligned}
$$

Q at the border Cont./Discont. mode-

$$
\begin{aligned}
& P_{0}=\frac{1}{3} P_{0, \text { max }}=\frac{180}{3}=60 \mathrm{~W} . \\
& \frac{V_{0}}{V_{\text {in }}}=\frac{D}{1-D}=\frac{60}{30}=2 \\
& \therefore 2-2 D=D \\
& \text { or } 3 D=2 \text { or } D=\frac{2}{3}=0.667
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {in }}=\frac{P_{0}\left(=P_{\text {in }}\right)}{V_{\text {in }}}=\frac{60}{30}=2 \mathrm{~A} \\
& I_{0}=\frac{f_{0}}{V_{0}}=\frac{60}{60}=1 \mathrm{~A} \\
& \therefore I_{L}=I_{i n}+I_{0}=3 \mathrm{~A} \\
& \hat{I}_{L}=2 \times I_{L}=6 \mathrm{~A} \\
& i_{L} \underset{0.66\rangle}{\Delta I_{L}} \underset{\substack{0}}{\sim}
\end{aligned}
$$

During $0<t<D T_{S} \quad V_{L}=V_{\text {in }}=30 \mathrm{~V}$

$$
\therefore L_{\text {crit }} \frac{\Delta I}{\Delta T}=V_{\text {in }} \Rightarrow L_{\text {crit }}+=\frac{30 V \times 0.667 \times 5 \mu \mathrm{~s}}{6 \mathrm{~A}}=16.667 \mu \mathrm{H}
$$

PhD Written Preliminary Exam
Problem 9A) Power Electronics (2 pts)
A Buck-Boost converter shown below is designed to operate with $V_{i n}=30 \mathrm{~V}, V_{o}=60 \mathrm{~V}$ and $f_{s}=200 \mathrm{kHz}$. The maximum output power level of this converter is $P_{o, \max }=180 \mathrm{~W}$. Assume ideal components.

(a) (1 pt) It is to be designed such that if the output power is equal to or higher than one-third of $P_{o, \text { max }}$, it remains in the continuous-current conduction mode; below this output power level, it goes into the discontinuous-conduction mode. Calculate the value of the inductor L to satisfy this design condition.
(b) (1 pt) This converter is operating at $P_{o}=90 \mathrm{~W}$. Calculate and draw the waveforms of the following variables as a function of time in the figure below, labeling both axes as appropriate: $v_{A}, v_{L}, i_{L, \text { ripple }}, i_{L}$ and $i_{\text {diode }}$. (Note: $i_{L, \text { ripple }}=i_{L}-I_{L}$).

Problem 9B) Power Systems
a)

$$
\begin{aligned}
P_{12}+j Q_{12} & =V_{1}\left[\theta_{1}\left[I_{12}\right]^{*}=V_{1}\left[\theta_{1}\left[\frac{V_{1}\left(\theta_{1}-V_{2} \mid \theta_{2}\right.}{.25 j}\right]^{*}\right.\right. \\
& =1\left[\frac{1-\left(1 \cos \theta_{2}+j \mid \sin \theta_{2}\right)}{125 j}\right]^{*} \\
& =\left[\frac{\left(1-1 \cos \theta_{2}\right)-j \mid \sin \theta_{2}}{.25 j}\right]^{*} \\
& =\frac{\left(1-\cos \theta_{2}\right)+j \sin \theta_{2}}{-, 25 j} \\
& =\frac{\left(4-4 \cos \theta_{2}\right)+j 4 \sin \theta_{2}}{-j} \\
& =j\left(4-4 \cos \theta_{2}\right)-4 \sin \theta_{2} \\
P_{12}=1 & =-4 \sin \theta_{2}, \sin \theta_{2}=-1 / 4, \theta_{2}=-14.4725^{\circ}
\end{aligned}
$$

Pact b)

$$
Q_{12}=4-4 \cos \theta_{2}=4-4(.9682)=.1270 \text { pu } \quad . \quad \text { man }
$$

Qsupplied by sVC:

$$
\begin{aligned}
& \text { X supplied by sVC: } \\
& \begin{aligned}
P_{21}+j Q_{21} & =V_{2}\left\lfloor\theta_{2}\left[I_{21}\right]^{*}\right. \\
& =V_{2}\left[\theta_{2}\left[\frac{V_{2}\left(\theta_{2}-V_{1}\left\lfloor\theta_{1}\right.\right.}{.25 j}\right]^{*}\right. \\
& =V_{2}\left\lfloor\theta_{2}\left[\frac{V_{2}\left(-\theta_{2}-1\right.}{-.25 j}\right]\right. \\
& =\frac{\left|V_{2}\right|^{2}-\left|V_{2}\right|\left[\theta_{2}\right.}{-.25 j} \\
& =\frac{1-\left(\cos \theta_{2}+j \sin \theta_{2}\right)}{-.25 j}=\frac{\left(4-4 \cos \theta_{2}\right)-j 4 \sin \theta_{2}}{-j} \\
& =j\left(4-4 \cos \theta_{2}\right)+4 \sin \theta_{2} \\
P_{21} & =4\left(\sin \left(-14.225^{\circ}\right)\right)=-1 \\
Q_{21} & =+.1270 \quad 1
\end{aligned} \ggg>1
\end{aligned}
$$

Pesucty, Pave Fhaw

Soln $9 B \quad$ By 3

Pac)
One line opened $x_{\text {eq }}=.5$

$$
\begin{gathered}
P_{12}+j Q_{12}=\frac{\left(1-\cos \theta_{2}\right)+j \sin \theta_{2}}{-.5 j} \\
1+j Q_{12}=j\left(2-2 \cos \theta_{2}\right)-2 \sin \theta_{2} \\
1=-2 \sin \theta_{2} \quad \sin \theta_{2}=-.5 \\
\theta_{2}=-30^{\circ} \\
Q_{12}=2-2 \cos \theta_{2}=2-2(.866)=.2629 \\
\longrightarrow 1 \\
\longrightarrow 1.2679
\end{gathered}
$$

Rote Q gen is $>Q^{\text {max }}$ Ra genentan

Sol Prob 9 B Pr 4
d) We want to bring Q_{12} down to 20 mar or.z pu. The only way is to reduce $\left|V_{1}\right|$ below 1.0

Now $\mid V_{1}\left(\right.$ is unturwn, θ_{2} is unkwan. assume θ_{1} is still year, V_{2} is still 1.0

$$
\begin{aligned}
1+.2 j & =V_{1} \cdot\left[\theta_{1}\left[\frac{V_{1}\left[\theta_{1}-V_{2}\left\lfloor\theta_{2}\right.\right.}{{ }^{5} j}\right]^{*}\right. \\
& =\left|V_{1}\right|\left[\frac{\left|V_{1}\right|-\left(1 \cos \theta_{2}+j \sin \theta_{2}\right)}{5 j}\right]^{*} \\
& =\left|v_{1}\right|\left[\frac{\left(V_{1} \mid-\cos \theta_{2}\right)-j \sin \theta_{2}}{5 j}\right]^{*} \\
& =\left|v_{1}\right|\left[\frac{\left(\left|V_{1}\right|-\cos \theta_{2}\right)+j \sin \theta_{2}}{-.5 j}\right] \\
& =\frac{\left.\left(\mid v_{1}\right)^{2}-\left|V_{1}\right| \cos \theta_{2}\right)+j\left|V_{1}\right| \sin \theta_{2}}{-.5 j}
\end{aligned}
$$

Sola Prob 9B Pr 5

$$
\begin{aligned}
& 1+.2 j=2 j\left(V_{1}^{2}-V_{1} \cos \theta_{2}\right)-2 V_{1} \sin \theta_{2} \\
& 1=-2 V_{1} \sin \theta_{2} \Rightarrow V_{1} \sin \theta_{2}=-.5 \\
& \left.12=2\left(V_{1}^{2}-V_{1} \cos \theta_{2}\right) \Rightarrow V_{1}^{2}-V_{1} \cos \theta_{2}\right)=.1 \\
& V_{1}^{2} \sin ^{2} \theta_{2}=.25 \quad V_{1}^{2} \cos ^{2} \theta_{2}=\left(V_{1}^{2}-.1\right)^{2} \\
& V_{1}^{2}\left(\sin ^{2} \theta_{2}+\cos ^{2} \theta_{2}\right)=\left(V_{1}^{2}-.1\right)^{2}+.25 \\
& V_{1}^{2}=V_{1}^{4}-0.2 V_{1}^{2}+.01+.25-
\end{aligned}
$$

let $x=v_{1}^{2} \quad x^{2}-1.2 x+.26=0$
Using guachatic Formula $X=.9162, V_{1}=.9572$

$$
\begin{aligned}
V_{l} \sin \theta_{2} & =-5 \\
\sin \theta_{2} & =-.5 / 9522=-5223 \\
\theta_{2} & =-31.49^{\circ}
\end{aligned}
$$

Voltage at gen must be dropped to. 9572 pu To get gen mar to 20 mar output.

