
- A. (2 pts) An ideal p^+ -n step junction has light uniformly absorbed throughout the device producing a photogeneration rate of G_L electron-hole pairs per cm³ per s. Assume that low-level injection prevails. Assume that the device is many diffusion lengths long. Neglect photogeneration and recombination-generation in the depletion region.
 - a) Solve the diffusion equation and obtain a general form for the IV characteristic.
 - b) Give a physical interpretation for all terms in part a.
 - c) Suppose there is a series resistance R, how is this equation modified?
- B. (2 pts) Given the simplified solar spectrum shown below.
 - a) What is the short circuit current and open circuit voltage of a pn junction solar cell using one material having a bandgap of 1.4 eV and operating at room temperature. Here assume that each photon creates only one electron-hole pair, that all of these are collected, and that the diode reverse saturation current is given by

$$J_s = Ae^{-E_g/k_BT}$$
 where $A = 6.03 \times 10^7 \text{ A/m}^2$

b) Estimate the room temperature efficiency of the device.

9	1.6×10^{-19} C
ϵ_{o}	$8.85 \times 10^{-14} \text{ F/cm}$
K_s	11.8 (Si)
Ko	3.9 (SiO ₂)
k_B	$8.617 \times 10^{-5} \text{ eV/K}$
h	$6.63 \times 10^{-34} \text{J s}$
m_o	$9.11 \times 10^{-31} \text{ kg}$
k_BT/q	0.0259 V at 300 K
C	$3 \times 10^8 \mathrm{m/s}$

electron charge permittivity of free space relative dielectric constant relative dielectric constant Boltzman's constant Planck constant electron mass thermal voltage speed of light