Consider a sample of InAs, which is a small band gap semiconductor. The material parameters are as follows:

$$E_{\rm G} = 0.35 \text{ eV} = (E_{\rm C} - E_{\rm V})$$
 at room temperature,

$$N_{\rm C} = 8.3 \times 10^{16} \, {\rm cm}^{-3}$$
 at room temperature,

$$N_{\rm V} = 1.7 \times 10^{19} \, {\rm cm}^{-3}$$
 at room temperature.

The material is n-type, but partially compensated. The doping levels are:

$$N_{\rm D} = 10^{16} \, {\rm cm}^{-3}$$

$$N_{\rm A} = 8 \times 10^{15} \, {\rm cm}^{-3}$$
.

The donor level (E_D) and acceptor level (E_A) are as follows:

$$E_{\rm D} = E_{\rm C} - 4 \,\mathrm{meV},$$

$$E_{\rm A} = E_{\rm V} + 40 \text{ meV}.$$

- (a) At what energy relative to either $E_{\rm C}$ or $E_{\rm V}$ is the equilibrium Fermi level at room temperature ($kT = 0.026 \; {\rm eV}$)? (3.0 pts)
- (b) At what energy is the Fermi level at T = 0? (1.0 pt)