a) Density of states

Using a wavefunction with periodic boundary conditions, one needs $k_{x} L_{x}=2 \pi n_{x}$, where n_{x} is an integer and L_{x} is a crystal dimension in the x-direction. Then any quantity needs to be summed over the states as

$$
\sum_{n_{x}, n_{y}}
$$

which can be changed to an integral as

$$
\frac{L_{x} L_{y}}{(2 \pi)^{2}} \int d k_{x} d k_{y}
$$

since a change in Δn_{x} corresponds to a change $\left(L_{x} / 2 \pi\right) \Delta k_{x}$. Then changing to polar coordinates $d k_{x} d k_{y}=k d k d \phi$. Integrating over angle this is

$$
\frac{A}{2 \pi} \int k d k
$$

If one wanted to be able to integrate over energy, use $E=\hbar v_{F} k$ to change k and $d k$ to get

$$
\frac{2 \pi A}{\left(h v_{F}\right)^{2}} \int E d E
$$

so that the density of states per unit area is

$$
D(E)=\frac{2 \pi}{\left(h v_{F}\right)^{2}} E
$$

This needs to be multiplied by 2 since there is a degeneracy of two conduction and valence bands and 2 since there are two spin states for each, giving

$$
D(E)=\frac{8 \pi}{\left(h v_{F}\right)^{2}} E
$$

b) The charge (number) density per area for the capacitor is

$$
n=\frac{K_{o} \epsilon_{o}}{d} \cdot V / q
$$

In [125]: $q=1.6 \mathrm{E}-19$
$\mathrm{n}=3.9 * 8.85 \mathrm{E}-14 * 20 / 500 \mathrm{E}-7 / \mathrm{q}$
print 'n=',n,'electrons/cm2' \#per cm2
$\mathrm{n}=8.62875 \mathrm{e}+11$ electrons $/ \mathrm{cm} 2$
The density of states is

$$
D(E)=\frac{2 \cdot 2}{2 \pi} \frac{E}{\left(\hbar v_{F}\right)^{2}}
$$

and the density of electrons added is

$$
n=\int_{0}^{E_{F}} d E f(E) D(E)
$$

where the Fermi factor is unity at $\mathrm{T}=0$ up to E_{F} (and nearly the same at RT since it will be found that $k_{B} T \ll E_{F}$) so that

$$
E_{F}=\frac{h \sqrt{n} \bar{\pi}}{2 \pi} v_{F}
$$

 If
\square
-2


```
        1.89267245551e+15 atoms per cm2 
        1.89267245551e+15 atoms per cm2 
```


ell. In addion there is one basis atom per cel. The area of this cell is A=2\times(1/2)a\sqrt{}{3}a/2.
In [128]: 1.89267245551e+15 atoms per cm2
l}\begin{array}{l}{\mathrm{ a=2.47E-8 }}\\{A=2*2*(1/2)*a*sqrt(3)*a/2}\\{\mathrm{ natoms=2/A }}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2 }\\{\mathrm{ ratio = n/natoms }}\\{\mathrm{ print 'number of electrons per atom =','%.3g' %ratio }}\\{\mathrm{ number of electrons per atom = 0.000456 }}\\{\mathrm{ (')}}
[128]:
1.89267245551e+15 atoms per cm2

```



    0.108583180137 V
    0.108583180137 V
```

l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}

```
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
```

l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}

```
l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}
```

l}\begin{array}{l}{\textrm{a}=2.47\textrm{E}-8}\\{\textrm{A}=2*2*(1/2)*a*\operatorname{sqrt(3)*a/2}}\\{\mathrm{ natoms=2/A}}\\{\mathrm{ print natoms,'atoms per cm2' }}\\{1.89267245551e+15 atoms per cm2}

```
```

 In [126]: 悬=6
    ```




\begin{abstract}

\end{abstract}

\title{
\(\square\) \\ In \([126\)
c）To call
cells．In
In［12
In \\ \(\square\) \\  \\ In［126］： \\ \[
1120
\] \\ 
}

c）To calculate the density of atoms in the lattice，examine the cell defined by \(\overrightarrow{a_{1}}, \overrightarrow{a_{2}}\) ．There are 4 corner atoms，each shared by 4 similar
```

 print EF/q, 'V'
    ```
    print EF/q, 'V'
```

 print EF/q, 'V'
 =6.63E-34
=6.63E-34
F=1E8
F=1E8
F=h*sqrt(n*pi)*vF/2/pi
F=h*sqrt(n*pi)*vF/2/pi
0
0
0
VF＝1E8

```
\(h=6.63 \mathrm{E}-34\)
\(\mathrm{vF}=1 \mathrm{E} 8\)
\(\mathrm{EF}=\mathrm{h}^{*} \mathrm{sqrt}(\mathrm{n} * \mathrm{pi}) * \mathrm{vF} / 2 / \mathrm{pi}\)
print EF／q，＇V＇
0.108583180137 V



\(\square\)
\(\square\)\(\square\)
\(\square\)
\(\square\)，```

